Answer:
47.76°
Explanation:
Magnitude of dipole moment = 0.0243J/T
Magnetic Field = 57.5mT
kinetic energy = 0.458mJ
∇U = -∇K
Uf - Ui = -0.458mJ
Ui - Uf = 0.458mJ
(-μBcosθi) - (-μBcosθf) = 0.458mJ
rearranging the equation,
(μBcosθf) - (μBcosθi) = 0.458mJ
μB * (cosθf - cosθi) = 0.458mJ
θf is at 0° because the dipole moment is aligned with the magnetic field.
μB * (cos 0 - cos θi) = 0.458mJ
but cos 0 = 1
(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³
1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³
1 - cos θi = 0.3278
collect like terms
cosθi = 0.6722
θ = cos⁻ 0.6722
θ = 47.76°
Answer:
a) t=10.2s
b) The 2g-cube moves first
Explanation:
Since the electric force is the same on both cubes and so is the coefficient of static friction, the first one to move will be the one with less mass.
So, on the 2g-cube the sum of forces are:

Replacing the friction on the first equation:
Thus 
The electric force is:
Solving for q:
q=71.44nC
This amount divided by the rate at which they are being charged:
t = 71.44nC / 7nC/s = 10.2s
Answer:

Explanation:
The centripetal acceleration is given by:

Here v is the linear speed and r is the radius of the circular motion. v is defined as the distance traveled to make one revolution (
) divided into the time takes to make one revolution, that is, the period (T).

Replacing (2) in (1) and replacing the given values:

Answer:
7.75 s
Explanation:
Newton's second law:
∑F = ma
35 N = (70 kg) a
a = 0.5 m/s²
Given v₀ = 0 m/s and Δx = 15 m:
Δx = v₀ t + ½ at²
(15 m) = (0 m/s) t + ½ (0.5 m/s²) t²
t = 7.75 s
Answer:
The value is 
Explanation:
From the question we are told that
The Coulomb constant is 
The charge on the electron/proton is 
The mass of proton 
The mass of electron is 
Generally for the electron to be held up by the force gravity
Then
Electric force on the electron = The gravitational Force
i.e



