Answer:
Consider the diagram. We are effectively being asked to prove that $\alpha=i_1$, for any value of $i_1$. Now, from trigonometry,
Explanation:
Explanation:
Given that,
Initial speed of the electron, 
Distance, s = 5 cm = 0.05 cm
Acceleration of the electron,
(a) Let v is the electron's velocity when it emerges from this region. It can be calculated as :


v = 871779.788 m/s
or

(b) Let t is the time for which the electron take to cross the region. It can be calculated as:



Hence, this is the required solution.
A. The horizontal velocity is
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π
b. vy = 4π cos (4πt + π/2)
vy = 0
c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]
d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]
e. t = -1.0
f. t = -0.35
g. Solve for t
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax
h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax
i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)
h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt
k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
3.701 kilometers hope that helps
The area of the sprinkles can be determined through the area of a circle that is pi * r^2 in which the given dimensions above are the radii, r. The second scenarios radius is only half of the original, that is 4 ft. In this case, we can compute the area of the second again. We calculate next the difference of two areas of circles.