answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
2 years ago
9

What is the value of the composite constant (gmer2e), to be multiplied by the mass of the object mo in the equation above? expre

ss your answer numerically in meters per second per second?
Physics
2 answers:
Bezzdna [24]2 years ago
8 0

The solution would be like this for this specific problem:

 

 

F = (G Me Mo) / Re^2 

F / Mo = (G Me) / Re^2 

G = gravitational constant = 6.67384 * 10^-11 m3 kg-1 s-2 

Me = 5.972 * 10^24 kg 

Re^2 = (6.38 * 10^6)^2 m^2 = 40.7044 * 10^12 m^2 = 4.07044 * 10^13 m^2 

G Me / Re^2 = (6.67384 * 10-11 * 5.972 * 10^24) / 4.0704 * 10^13 = 9.7196 m/s^2 

9.7196 m/s^2 = acceleration due to Earth’s gravity 

Therefore, the value of the composite constant (Gme / r^2e) that is to be multiplied by the mass of the object mo in the equation above is 9.7196 m/s^2.

OverLord2011 [107]2 years ago
5 0

The value of the composite constant is to be multiplied by the mass of object is \boxed{9.819\text{ m/s}^2}.

Further explanation:

We have to find the composite constant.

From the Newton’s law of the gravitation, gravitational force exerted by earth on the object at the surface of the earth can be calculated as,

\boxed{F=\dfrac{{G{M_e}{m_o}}}{{{R_e}^2}}}

Here, G is the gravitational constant and its value is 6.674 \times10^{-11}\text{ m}^3/\text{kg}\cdot\text{s}^2.

{M_e} is the mass of the Earth which is 5.972\times10^{24}\text{ kg}.

{m_o} is the mass of object on surface of the Earth in kg

{R_e} is the distance between the center of Earth to the center of the object that is the radius of the Earth which is equal to 6.371 \times {10^6}\,{\text{m}}.

So, the gravitational force exerted by earth on the object of unit mass at the surface of the earth can be calculated as,

{F_1}=\dfrac{{G{M_e}}}{{{R_e}^2}}

Substitute the value of G as 6.674 \times10^{-11}\text{ m}^3/\text{kg}\cdot\text{s}^2, value of {M_e} as 5.972\times10^{24}\text{ kg} and value of {R_e} as 6.371\times{10^6}\text{m} in above equation.

\begin{aligned}{F_1}&=\frac{{\left( {6.674 \times {{10}^{ - 11}}} \right)\left( {5.972 \times {{10}^{24}}} \right)}}{{{{\left( {6.371 \times {{10}^6}} \right)}^2}}}\\&=\frac{{\left( {3.9857 \times {{10}^{14}}} \right)}}{{40.59 \times {{10}^{12}}}}\\&=9.819\text{ m/s}^2\\\end{aligned}

This value is equal to the acceleration due to earth’s gravity.

Therefore the value of the composite constant is to be multiply by the mass of the object in the above equation is \boxed{9.819\text{ m/s}^2}.

Learn more:

1. A 50 kg meteorite moving at a speed of 1000m/s brainly.com/question/6536722

2. The changes experienced by an object under the unbalanced force brainly.com/question/2720955

3. A rocket being thrust upward as the force of the fuel brainly.com/question/11411375

Answer detail:

Grade: Senior School

Subject: Physics

Chapter: Gravitation

Keywords:

Composite constant, mass, object, Gravitational constant, Mo, Me, G, mass of Earth, object, 6.67X10^-11, 5.972x10^24 kg.

You might be interested in
Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
Dafna11 [192]

Answer:

720 J

Explanation:

The gravitational potential energy that Essam loses for every metre is given by:

\Delta U=mg \Delta h

where

m=72 kg is Essam's mass

g=10 N/kg is the gravitational field strength

\Delta h=1 m is the difference in height

By substituting the numbers into the formula, we find

\Delta U=(72 kg)(10 N/kg)(1 m)=720 J

5 0
2 years ago
Read 2 more answers
A coworker did not clean his work area before going home this could cause an accident so you quickly clean up the next day you s
defon

Answer:

THE FIRST ONE YOU SHOULD TELL HIM AND THE LAST ONE YOU SHOUDENT DO BECAUSE HE WILL DO IT AGAIN AND EXPECT OTHERS TO CLEAN UP AFTER HIM

Explanation:

5 0
1 year ago
Read 2 more answers
A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
Umnica [9.8K]

Answer:

The gravitational force exerted on the object is 75 N (answer D)

Explanation:

Hi there!

The gravitational force is calculated as follows:

F = m · g

Where:

F = force of gravity.

m = mass of the object.

g = acceleration due to gravity (unknown).

For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:

y = y0 + v0 · t + 1/2 · a · t²

Where:

y = position at time t.

y0 = initial position.

v0 = initial velocity.

t = time.

g = acceleration due to gravity.

Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.

Then, after 2 seconds, the height of the object will be -30 m:

y = y0 + v0 · t + 1/2 · g · t²

-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²

-30 m = 1/2 · g · 4 s²

-30 m = 2 s ² · g

-30 m/2 s² = g

g = -15 m/s²

Then, the magnitude of the gravitational force will be:

F = m · g

F = 5 kg · 15 m/s²

F = 75 N

The gravitational force exerted on the object is 75 N (answer D)

Have a nice day!

8 0
2 years ago
How much gravitational potential energy does a 45.2 kg object have when it is 21.9m above the ground?
Blizzard [7]

Answer:

Explanation:

The formula for gravitational potential energy is

Ep = m · g · h   Assuming that the acceleration is g = 10m/s²

Ep = 45.4 · 10 · 21.9 = 9,942.6 J

God is with you!!!

6 0
2 years ago
Two ice skaters, Lilly and John, face each other while stationary and push against each others hands. John's mass is twice the m
VladimirAG [237]

Answer:

lily's speed would be twice john's speed

7 0
2 years ago
Other questions:
  • a bus is moving at 22m/s [E] for 12s. Then the bus driver slows down at 1.2m/s2 [W] until the bus stops. Determine the total dis
    14·1 answer
  • The banking angle in a turn on the Olympic bobsled track is not constant, but increases upward from the horizontal. Coming aroun
    7·1 answer
  • A mountain 10.0 km from a person exerts a gravitational force on him equal to 2.00% of his weight. (a) Calculate the mass of the
    15·1 answer
  • A child is playing with a spring toy, first stretching and then compressing it.
    10·1 answer
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
  • 2 boxes connected by a plus sign hold Wave 1 on top and Wave 2 on bottom. The crests of Wave 1 line up with the troughs of Wave
    9·2 answers
  • Se deja caer una piedra A en reposo desde un acantilado muy alto. Cuando ha caído 5 m, se deja caer una piedra B. A. Explicar ¿c
    8·1 answer
  • A car travels around an oval racetrack at constant speed. The car is accelerating:________.
    11·1 answer
  • Observe: Up until now, all the problems you have solved have involved converting only one unit. However, some conversion problem
    6·1 answer
  • Lizette works in her school’s vegetable garden. Every Tuesday, she pulls weeds for 15 minutes. Weeding seems like a never-ending
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!