Answer:
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).
Explanation:
The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that corresponds to the wavelengths of light it transmits, not absorbs. The absorbing color is complementary to the color it transmits.
So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.
<u><em>
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>
Answer:
the ratio is 
Explanation:
Given

The RMS velocity of molecules in a gas is given by

where T=temperature

For T = 387K

For T = 774

dividing eqn 1 and eqn 2


Thus,the ratio is 
Answer:
The number of turns is 
Explanation:
From the question we are told that
The inner radius is 
The outer radius is 
The current it carries is 
The magnetic field is 
The distance from the center is 
Generally the number of turns is mathematically represented as

Generally
is the permeability of free space with value

So


The potential energy is most often referred to as the "energy at rest" and is dependent on the elevation of an object. This can be calculated through the equation,
E = mgh
where E is the potential energy, m is the mass, g is the acceleration due to gravity, and h is the height. In this item, we are not given with the mass of the cart so we assume it to be m. The force is therefore,
E = m(9.8 m/s²)(0.5 m) = 4.9m
Hence, the potential energy is equal to 4.9m.
Answer:
7350 J
Explanation:
The gravitational potential energy of the rock sitting on the edge of the cliff is given by:

where
m is the mass of the rock
g is the gravitational acceleration
h is the height of the cliff
In this problem, we have
m = 50 kg
g = 9.8 m/s^2
h = 15 m
Substituting numbers into the formula, we find:
