Answer:
The magnitude of the total linear acceleration is 0.27 m/s²
b. 0.27 m/s²
Explanation:
The total linear acceleration is the vector sum of the tangential acceleration and radial acceleration.
The radial acceleration is given by;

where;
a is the angular acceleration and
r is the radius of the circular path

Determine time of the rotation;

Determine angular velocity
ω = at
ω = 1.6 x 0.707
ω = 1.131 rad/s
Now, determine the radial acceleration

The magnitude of total linear acceleration is given by;

Therefore, the magnitude of the total linear acceleration is 0.27 m/s²
b. 0.27 m/s²
We need the frequency of the photon, it is v = c/ λ
Where c is 3 x 10^8 ms^-1 and λ
is the wave length
We also need the expression of
connecting frequency to energy of photon
which is E = hv where h is Planck’s
constant
Combining the two equations
will give us:
E = h x c/λ
Inserting the values, we will
have:
E = 6.626 x 10^-34 x 3 x 10^8 /
0.126
E = 1.578 x 10^ -24 J
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
the answer is B
Explanation: this was actually an ap exam question a few years back. the reason for answer B is that the only force being applied to the kitten is the force of gravity after being pushed.