answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxx [7]
2 years ago
11

Three particles are moving perpendicular to a uniform magnetic field and travel on circular paths (see the drawing). They have t

he same mass and speed. List the particles in order of their charge magnitude, largest to smallest.
Physics
1 answer:
Vaselesa [24]2 years ago
7 0

Explanation:

Radius of a charged particle is given by

r=mv / Bq

= k/ q

where   k   =   m v / B         is a constant.

i.e.   more is the magnitude of  charge, less is the radius. (inversely proportional)

From the diagram  r_3   >   r_2   >   r_1  (more the curvature, less is the radius)

( although drawing is not given i am assuming the above order, however, one can change the order as per the diagram. The concept used remains the same)

therefore,    q_1   >   q_2   >   q_3 .

You might be interested in
What is the total flux φ that now passes through the cylindrical surface? enter a positive number if the net flux leaves the cyl
trasher [3.6K]

Net flux through the cylindrical surface is given as

\phi = \frac{q}{epsilon_0}

here q = enclosed charge in the surface

so here in order to find the value of q

q = \lambda* L

so now we have

\phi = \frac{\lambda * L}{\epsilon_0}

so this is the total flux

now by Gauss's law we can find the electric field

\int E.dA = \phi

\int E.dA = \frac{\lambda * L}{\epsilon_0}

E* 2\pi rL = \frac{\lambda * L}{epsilon_0}

E = \frac{\lambda}{2\pi \epsilon_0 r}

<em>by above expression we can find the electric field at required position</em>

8 0
1 year ago
A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger pulley with an angular velocity
Likurg_2 [28]

Answer:

a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2  = 239.6 N,

b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm

Explanation:

Given that:

γ= 9.5 kN/m³ = 9500N/m3

b = 6 inches = 0.1524 m

t = 0.0013 mm

d = 2 inches  = 0.0508 m

n = 1750 rpm

H_{nom}=2hp=1491.4W

L = 9 ft = 2.7432 m

Ks = 1.25

g = 9.81 m/s²

a)

w=\gamma b t = 9500* 0.1524*0.0013=1.88N/m

V=\frac{\pi d n}{60} =\pi *0.0508*1750/60=4.65 m/s

F_c=\frac{wV^2}{g}=1.88*4.65^2/9.81=4.15N

(F_1)_a=bF_aC_pC_v=0.1524*6000*0.7*1=640N

T=\frac{H_{nom}n_dK_s}{2\pi n}= \frac{1491*1.25*1}{2*\pi*1750/60}=10.17Nm

F_2=(F_1)_a-\frac{2T}{D}= 640-\frac{2*10.17}{0.0508} =239.6N

F_i=\frac{(F_1)_a+F_2}{2} -F_c=435.65N

b)

H_a=1491*1.25=1863.75W

n_f_s=\frac{H_a}{H_{nom}K_S }=1

dip = \frac{L^2w}{8F_i} =\frac{2.7432*1.88}{435.65}=11.8mm

7 0
2 years ago
The force diagram represents a girl pulling a sled with a mass of 6.0 kg to the left with a force of 10.0 N at a 30.0 degree ang
STatiana [176]

the correct answers are 54N and -1,2m/s^2

6 0
2 years ago
Read 2 more answers
There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
elena-14-01-66 [18.8K]

Answer:

P = ρRT/M

Explanation:

Ideal gas equation is given as follows generally:

PV = nRT (1)

P = pressure in the containing vessel

V = volume of the containing vessel

n = number of moles

R = gas constant

T = temperature in K

n = m/M

m = mass of the gas contained in the vessel in g

M = molar mass in g/mol

ρ = m/V

Density of the gas = ρ

Substituting for n in (1)

PV = mRT/M. (2)

Dividing equation (2) through by V

P = m/V ×RT/M

P = ρRT/M

5 0
2 years ago
Two objects interact with each other and with no other objects. Initially object A has a speed of 5 m/s and object B has a speed
Radda [10]

Answer:

We can conclude that there is a decrease in kinetic energy of the particles due to their elastic collision, since kinetic energy is directly proportional to squared velocity of the particles.

Explanation:

Given:

initial velocity of particle A, Ua = 5m/s

initial velocity of particle B, Ub = 10 m/s

final velocity of particle A, Va = 4m/s

final velocity of particle B, Vb = 7m/s

For particle A:

The final velocity is 1 less than the initial velocity.

For particle B:

The final velocity is 3 less than the initial velocity.

We can conclude that there is a loss in kinetic energy due to elastic collision of the two particles, since kinetic energy is directly proportional to squared velocity of the particles. A decrease in velocity means decrease in kinetic energy.

4 0
2 years ago
Other questions:
  • Anne releases a stone from a height of 2 meters. She measures the kinetic energy of the stone at 9.8 joules at the exact point i
    14·2 answers
  • If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit willa) decrease
    9·1 answer
  • If 10.0 liters of oxygen at stp are heated to 512 °c, what will be the new volume of gas if the pressure is also increased to 15
    15·1 answer
  • The velocity of a an object in linear motion changes from +25 meters per second to +15 meters per second in 2.0 seconds.
    9·1 answer
  • A 100 kg object hangs from two steel cables, both with radius 1.2 mm. The first cable is 2.5 m long and 2 mm shorter than the se
    7·1 answer
  • Describe the distribution of wdiff in terms of its center, shape, and spread, including any plots you use
    6·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • Lizette works in her school’s vegetable garden. Every Tuesday, she pulls weeds for 15 minutes. Weeding seems like a never-ending
    15·2 answers
  • Where is there kinetic energy in this system?
    15·1 answer
  • Which of the following statements accurately describes the atmospheric patterns that influence local weather?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!