Answer:
The tension in the rope is 281.60 N.
Explanation:
Given that,
Length = 3.0 m
Weight = 600 N
Distance = 1.0 m
Angle = 60°
Consider half of the ladder,
let tension be T, normal reaction force at ground be F, vertical reaction at top hinge be Y and horizontal reaction force be X.
....(I)
.....(II)
On taking moment about base

Put the value into the formula


....(III)
We need to calculate the force for ladder


We need to calculate the tension in the rope
From equation (3)




Hence, The tension in the rope is 281.60 N.
L = 1.00 m, the original length
A = 0.5 mm² = 0.5 x 10⁻⁶ m², the cross sectional area
E = 2.0 x 10¹¹ n/m², Young's modulus
P = 1500 N, the applied tension
Calculate the stress.
σ = P/A = (1500 N)/(0.5 x 10⁻⁶ m²) = 3 x 10⁹ N/m²
Let δ = the stretch of the string.
Then the strain is
ε = δ/L
By definition, the strain is
ε = σ/E = (3 x 10⁹ N/m²)/(2 x 10¹¹ N/m²) = 0.015
Therefore
δ/(1 m) = 0.015
δ = 0.015 m = 15 mm
Answer: 15 mm
Answer:

Explanation:
The strain is defined as the ratio of change of dimension of an object under a force:

where
is the change in length of the object
is the original length of the object
In this problem, we have
and
, therefore the strain is
