Answer:
5.59 m/s
Explanation:
We are given;
Mass = 110 kg
Initial velocity: u = 13.41 m/s
Force = 615 N
Time(t) = 1 s
Now, the formula for force is;
Force = mass x acceleration
Thus;
615 = 110 × acceleration
\Acceleration(a) = 615/110 = 5.591 m/s²
Now, using Newton's first law of motion, we can find acceleration (a). Thus;
v = u + at
v = 13.41 + (5.591 × 1)
v ≈ 19 m/s
So,the change in velocity is;
Final velocity(v) - Initial velocity(u) = 19 - 13.41 = 5.59 m/s
Answer:
Picasso’s artistic achievements were in large part the result of his contribution to help bring the Nazi' devastating casual bombing and Spanish civil war in Guernica to the world's attention through his paintings.
Answer:
The separation between the first two minima on either side is 0.63 degrees.
Explanation:
A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:
with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:
for the first minimum
solving for θ1:


for the second minimum:



So, the angular separation between them is the rest:


Answer:
The change in the centripetal acceleration of the brother,
Δa = V₂²/R - V₁²/R
Explanation:
Given data,
A sister spins her brother in a circle of radius, R
The angular velocity of the brother, ω₁ = V₁/R
The angular velocity of the brother, ω₂ = V₂/R
The centripetal acceleration is given by the relation
a = V²/R
Therefore change in the centripetal acceleration of the brother,
Δa = V₂²/R - V₁²/R
Answer:
B
Explanation:
because, convection is the transfer of heat between fluid substances/materials