answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
2 years ago
5

A 90 kg man stands in a very strong wind moving at 17 m/s at torso height. As you know, he will need to lean in to the wind, and

we can model the situation to see why. Assume that the man has a mass of 90 kg, with a center of gravity 1.0 m above the ground. The action of the wind on his torso, which we approximate as a cylinder 50 cm wide and 90 cm long centered 1.2 m above the ground, produces a force that tries to tip him over backward. To keep from falling over, he must lean forward.
A. What is the magnitude of the torque provided by the wind force? Take the pivot point at his feet. Assume that he is standing vertically. Assume that the air is at standard temperature and pressure.
B. At what angle to the vertical must the man lean to provide a gravitational torque that is equal to this torque due to the wind force?
Physics
1 answer:
victus00 [196]2 years ago
5 0

Answer:

a)  t=195.948N.m

b)  \phi=13.6 \textdegree

Explanation:

From the question we are told that:

Density \rho=1.225kg/m^2

Velocity of wind v=14m/s

Dimension of rectangle:50 cm wide and 90 cm

Drag coefficient \mu=2.05

a)

Generally the equation for Force is mathematically given by

F=\frac{1}{2}\muA\rhov^2

F=\frac{1}{2}2.05(50*90*\frac{1}{10000})*1.225*17^2

F=163.29

Therefore Torque

t=F*r*sin\theta

t=163.29*1.2*sin90

t=195.948N.m

b)

Generally the equation for torque due to weight is mathematically given by

t=d*Mg*sin90

Where

d=sin \phi

Therefore

t=sin \phi*Mg*sin90

195.948=833sin \phi

\phi=sin^{-1}\frac{195.948}{833}

\phi=13.6 \textdegree

You might be interested in
Derive an algebraic equation for the vertical force that the bench exerts on the book at the lowest point of the circular path i
fiasKO [112]

Answer:

The algebraic equation is:

F_{v} =\frac{m_{b}v_{b}^{2}   }{R} -m_{b} g

Explanation:

Given information:

mb = book's mass

vb = tangential speed

R = radius of the path

Question: Derive an algebraic equation for the vertical force, Fv = ?

To derive the equation, we need to draw a force diagram for this case, please, see the attached diagram. As you can see, there are three types of forces acting on the system. Two up and one of the weight acting down. Therefore, the algebraic equation is as follows:

F_{v} =\frac{m_{b}v_{b}^{2}   }{R} -m_{b} g

The variables were defined above and g is the gravity.

4 0
2 years ago
Submarine a travels horizontally at 11.0 m/s through ocean water. it emits a sonar signal of frequency f 5 5.27 3 103 hz in the
xeze [42]
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is 
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
6 0
2 years ago
the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
kenny6666 [7]

The braking force is -400 N

Explanation:

We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

F \Delta t = m(v-u)

where in this problem, we have:

F is the force applied by the brakes

\Delta t = 65 s is the time interval

m = 13,000 kg is the mass of the ferry

u = 2.0 m/s is the initial velocity

v = 0 is the final velocity

And solving for F, we find the force applied by the brakes:

F=\frac{m(v-u)}{\Delta t}=\frac{(13000)(0-2.0)}{65}=-400 N

where the negative sign indicates that the direction is backward.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

4 0
2 years ago
A 5.09 × 1014-hertz electromagnetic wave is traveling through a transparent medium. The main factor that determines the speed of
sergiy2304 [10]
We are given an electromagnetic wave with a frequency of 5.09 x 10^14 Hz and travelling through a transparent medium. If the medium was vacuum, the speed of the wave would be equal to the speed of light. Otherwise, the main factor that would determine the speed of the wave is its wavelength.
6 0
2 years ago
Cylinder A is moving downward with a velocity of 3 m/s when the brake is suddenly applied to the drum. Knowing that the cylinder
Xelga [282]

Answer:

Incomplete question

Check attachment for the given diagram

Explanation:

Given that,

Initial Velocity of drum

u=3m/s

Distance travelled before coming to rest is 6m

Since it comes to rest, then, the final velocity is 0m/s

v=3m/s

Using equation of motion to calculate the linear acceleration or tangential acceleration

v²=u²+2as

0²=3²+2×a×6

0=9+12a

12a=-9

Then, a=-9/12

a=-0.75m/s²

The negative sign shows that the cylinder is decelerating.

Then, a=0.75m/s²

So, using the relationship between linear acceleration and angular acceleration.

a=αr

Where

a is linear acceleration

α is angular acceleration

And r is radius

α=a/r

From the diagram r=250mm=0.25m

Then,

α=0.75/0.25

α =3rad/sec²

The angular acceleration is =3rad/s²

b. Time take to come to rest

Using equation of motion

v=u+at

0=3-0.75t

0.75t=3

Then, t=3/0.75

t=4 secs

The time take to come to rest is 4s

7 0
2 years ago
Other questions:
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    14·1 answer
  • In your own words, describe the three steps in ray tracing used to identify where an image forms.
    14·2 answers
  • An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
    9·1 answer
  • As a moon follows its orbit around a planet, the maximum grav- itational force exerted on the moon by the planet exceeds the min
    9·1 answer
  • Potential energy matter has a result of its ____ or ____.
    5·2 answers
  • Fatima is watching her pet cat, Winter, napping in the sun. Fatima is curious about the heart rate of Winter when she is napping
    8·2 answers
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.
    10·1 answer
  • One of the main factors driving improvements in the cost and complexity of integrated circuits (ICs) is improvements in photolit
    6·1 answer
  • Why does the closed top of a convertible bulge when the car is riding along a highway? Why does the closed top of a convertible
    5·1 answer
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!