answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Usimov [2.4K]
2 years ago
9

Integrated Concepts A basketball player jumps straight up for a ball. To do this, he lowers his body 0.300 m and then accelerate

s through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.900 m above the floor.
a. Calculate his velocity when he leaves the floor.
b. Calculate his acceleration while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.300 m.
c. Calculate the force he exerts on the floor to do this, given that his mass is 110 kg.
Physics
1 answer:
____ [38]2 years ago
4 0

Answer:

a) Velocity = 4.2m/s

b) Acceleration = 2.94m/s^2

c) Force exerted on the floor= 1401.4×10^3N

Explanation:

a) Velocity,V=sqrt(2×9.8×0.900)

V= 4.2m/s

b) Vf2= V^2+2ay2

a= 4.2^2 - 0/2×3

a= 17.64/6= 2.94m/s^2

c) Newton's 2nd law indicates:

Fnet= F - mg=ma

F= m(g+a)

F=110(9.8+2.94)

F=110×12.94

F= 1401.4N

You might be interested in
A cart is pushed to the right with a force of 15 N while being pulled to the left with a force of 20 N. The net force on the car
9966 [12]

The net force of the cart when it is pushed to the right with a force of 15N.

<u>Explanation:</u>

To find the force of net, which is calculated by the  formula.

The Net Force= Addition of the force applied on the respective  direction.

The Net Force here is given by

The Net Force = 15-20 (A force towards the right and a force towards left, two opposite so subtraction).

Hence

Thus the Net Force = -5(The force towards left, so it gets a  negative value).

5 0
2 years ago
A floating leaf oscillates up and down two complete cycles in one second as a water wave passes by. The wave's wavelength is 10
postnew [5]

Answer:

C) 20 m/s

Explanation:

Wave: A wave is a disturbance that travels through a medium and transfers energy from one point to another, without causing any permanent displacement of the medium itself. Examples of wave are, water wave, sound wave, light rays, radio waves. etc.

The velocity of a moving wave is

v = λf ............................ Equation 1

Where v = speed of the wave, λ = wave length, f = frequency of the wave.

Given: f = 2 Hz (two complete cycles in one seconds), λ = 10 meters

Substituting these values into equation 1

v = 2×10

v = 20 m/s.

Thus the speed of the wave = 20 m/s

The right option is C) 20 m/s

7 0
2 years ago
Traffic officials indicate, it takes longer to ______ when you drive fast.
nignag [31]
The answer in the blank is that it is difficult to accelerate at decelerate the vehicle when it is on a fast speed because having a fast speed makes it difficult to adjust the meter as well as if you try to decelerate the vehicle, it could burn out the tires and engine as it is in the fast speed, in accelerating it, it could also be complicated because it would only make the car faster enough that you may no longer control of how to stop it.
7 0
2 years ago
Read 2 more answers
A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.
Sedaia [141]

Answer:

335°C

Explanation:

Heat gained or lost is:

q = m C ΔT

where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.

Heat gained by the water = heat lost by the copper

mw Cw ΔTw = mc Cc ΔTc

The water and copper reach the same final temperature, so:

mw Cw (T - Tw) = mc Cc (Tc - T)

Given:

mw = 390 g

Cw = 4.186 J/g/°C

Tw = 22.6°C

mc = 248 g

Cc = 0.386 J/g/°C

T = 39.9°C

Find: Tc

(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)

Tc = 335

7 0
2 years ago
Suppose a rectangular piece of aluminum has a length D, and its square cross section has the dimensions W XW, where D (W x W) to
Ludmilka [50]

Answer:

R₂ / R₁ = D / L

Explanation:

The resistance of a metal is

        R = ρ L / A

Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section

We apply this formal to both configurations

Small face measurements (W W)

The length is

         L = W

Area  

         A = W W = W²

        R₁ = ρ W / W² = ρ / W

Large face measurements (D L)

       Length L = D= 2W

       Area     A = W L

     R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L

The relationship is

    R₂ / R₁ = 2W²/L

6 0
2 years ago
Other questions:
  • A major benefit of the daguerreotype process is that ________.
    14·1 answer
  • A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
    15·2 answers
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • A more realistic car would cause the wheels to spin in a manner that would result in the ground pushing it forward with a consta
    11·1 answer
  • A spherical shell of radius 9.0 cm carries a uniform surface charge density σ= 9.0 nC/m2. The electric field at r= 9.1 cm is app
    5·1 answer
  • What visible signs indicate a precipitation reaction when two solutions are mixed?
    6·1 answer
  • At a certain location, a gravitational force with a magnitude of 350 newtons acts on a 70.-kilogram astronaut. What is the magni
    6·1 answer
  • 1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
    9·1 answer
  • PLZZZ HELP
    14·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!