Answer:
T = 273 + (-50) = 273 – 50 = 223 K
R = 188.82 J / kg K for CO2
Density (Martian Atmosphere) = P / RT = 900 / 188.92 x 223 = 900 / 42129.16 = 0.0213 kg / 
T = 273 +18 = 291 K, R = 287 J / kg k (for air) P = 101.6 k Pa = 101600 Pa
Density (Earth Atmosphere) = P / RT = 101600 / 287 x 291 = 1.216 kg /
Answer:
Option B is the correct answer.
Explanation:
Shear stress is the ratio of shear force to area.
We have
Shear stress = 3 N/mm² = 3 x 10⁶ N/m²
Area = Area of rectangle = 10 x 10⁻² x d = 0.1d
Shear force = 50000 N
Substituting

Width of beam = 16.67 cm
Option B is the correct answer.
Answer:
Normal Conversation: i=106i0
i(dB)=60
Power saw a 3 feet: i=1011i0
i(dB)=110
Jet engine at 100 feet: i=1018i0
i(dB)=180
Explanation:
if these are the same as edge, then these are the answers! :)
Answer:
x_total = (A + B) cos (wt + Ф)
we have the sum of the two waves in a phase movement
Explanation:
In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.
Max
x₁ = A cos (wt + Ф)
Jimmy
x₂ = B cos (wt + Ф)
total movement
x_total = (A + B) cos (wt + Ф)
Therefore we have the sum of the two waves in a phase movement
Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s