answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
2 years ago
10

Dao makes a table to identify the variables used in the equations for centripetal acceleration. A 2 column 5 rows. The first col

umn is labeled Variable with entries a Subscript c Baseline, T, r, v. The second column is labeled Quantity with entries blank, X, blank, Y. What quantities belong in cells X and Y? X: centripetal acceleration Y: period X: tangential speed Y: radius X: radius Y: centripetal acceleration X: period Y: tangential speed
Physics
2 answers:
Viefleur [7K]2 years ago
8 0

Answer:

Column X: Tangential Speed

Column Y: Radius  

Explanation:

Zanzabum2 years ago
5 0

Answer:

Column X. Tangential Speed

Column Y. radius  

Explanation:

The equation for centripetal acceleration is

           a_{c} = v² / r

Where v is the tangential velocity of the body and the radius of curvature.

To analyze this equation you must place the tangential velocity in one column and in the other the turning radius

Let's check the answers

Column X. Tangential Speed

Column Y. radius  

This is the correct answer.

You might be interested in
You've always wondered about the acceleration of the elevators in the 101 story-tall Empire State Building. One day, while visit
love history [14]

To develop this problem we will proceed to convert all units previously given to the international system for which we have to:

140 lb = 63.5 kg \rightarrow 63.5kg (9.8m/s) =622.3 N

120 lb = 54.4 kg \rightarrow 54.4kg (9.8m/s)= 533 N

170 lb = 77.1 kg \rightarrow 77.1 kg (9.8m/s) =756 N

PART A ) From the given values the minimum acceleration will be given for 120Lb and maximum acceleration when 170Lb is reached therefore:

F = 756 - 622.3

F = 133.7N

Through the Newtonian relationship of the Force we have to:

F= ma

a = \frac{F}{m}

a = \frac{133.7}{63.5}

a = 2.1m/s^2

PART B) For the maximum magnitude of the acceleration downward we have that:

F = 622.3 - 533

F = 89.3N

Through the Newtonian relationship of the Force we have to:

F= ma

a = \frac{F}{m}

a = \frac{89.3}{63.5}

a = 2.1m/s^2

a = 1.04 m/s^2

7 0
2 years ago
The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This sp
Delvig [45]

Answer:

Explanation:

Here is the full question and answer,

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.

When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.

Part A: At what speed v should an archerfish spit the water to shoot down a floating insect located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60 degrees above the water surface.

Part B: Now assume that the insect, instead of floating on the surface, is resting on a leaf above the water surface at a horizontal distance 0.600 m away from the fish. The archerfish successfully shoots down the resting insect by spitting water drops at the same angle 60 degrees above the surface and with the same initial speed v as before. At what height h above the surface was the insect?

Answer

A.) The path of a projectile is horizontal and symmetrical ground. The time is taken to reach maximum height, the total time that the particle is in flight will be double that amount.

Calculate the speed of the archer fish.

The time of the flight of spitted water is,

t = \frac{{2v\sin \theta }}{g}

Substitute 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g and 60^\circ  for \theta in above equation.

t = \frac{{2v\sin 60^\circ }}{{9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}}}\\\\ = \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\  

Spitted water will travel 0.80{\rm{ m}} horizontally.

Displacement of water in this time period is

x = vt\cos \theta

Substitute \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2} for t\rm 60^\circ[tex] for [tex]\theta and 0.80{\rm{ m}} for x in above equation.

\\0.80{\rm{ m}} = v\left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\left( {\cos 60^\circ } \right)\\\\0.80{\rm{ m}} = {v^2}\left( {0.1767{\rm{ }}} \right)\frac{1}{2}{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\\\v = \sqrt {\frac{{2\left( {0.80{\rm{ m}}} \right)}}{{0.1767\;{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}}}} \\\\ = 3.01{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

B.) There are two component of velocity vertical and horizontal. Calculate vertical velocity and horizontal velocity when the angle is given than calculate the time of flight when the horizontal distance is given. Value of the horizontal distance, angle and velocity are given. Use the kinematic equation to solve the height of insect above the surface.

Calculate the height of insect above the surface.

Vertical component of the velocity is,

{v_v} = v\sin \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_v} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\sin 60^\circ \\\\ = 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

Horizontal component of the velocity is,

{v_h} = v\cos \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_h} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\cos 60^\circ \\\\ = 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

When horizontal ({0.60\;{\rm{m}}} distance away from the fish.  

The time of flight for distance (d) is ,

t = \frac{d}{{{v_h}}}

Substitute 0.60\;{\rm{m}} for d and 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_h} in equation t = \frac{d}{{{v_h}}}

\\t = \frac{{0.60\;{\rm{m}}}}{{1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}}}\\\\ = 0.3987{\rm{ s}}\\

Distance of the insect above the surface is,

s = {v_v}t + \frac{1}{2}g{t^2}

Substitute 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_v} and 0.3987{\rm{ s}} for t and - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g in above equation.

\\s = \left( {2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\left( {0.3987{\rm{ s}}} \right) + \frac{1}{2}\left( { - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}} \right){\left( {0.3987{\rm{ s}}} \right)^2}\\\\ = 0.260{\rm{ m}}\\

7 0
2 years ago
A Wooden block has a mass of 0.200kg, a specific heat of 710 J (kg times degrees Celsius and is at a temperature of 20.0 degrees
olchik [2.2K]

Answer:

35°C

Explanation:

q = mCΔT

2130 J = (0.200 kg) (710 J/kg/°C) (T − 20.0°C)

T = 35°C

8 0
2 years ago
If the water vapor content of air remains constant, lowering air temperature causes _____.
Molodets [167]

<em>ANSWER</em>

<u>An increase in relative humidity</u>

<em><u>Could you mark me brainliest plz?</u></em>

8 0
2 years ago
Read 2 more answers
A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by
Airida [17]

Answer:

Mobility of the minority carriers, \mu_{n} =1184.21 cm^{2} /V-sec

Diffusion coefficient for minority carriers,D_{n} = 29.20 cm^2 /s

Verified from Einstein relation as  \frac{D_{n} }{\mu_{n} }  = 25 mV

Explanation:

Length of sample, l_{s} = 2 cm

Separation between the two probes, L = 1.8 cm

Drift time, t_{d} = 0.608 ms

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), \mu_{n} = \frac{V_{d} }{E}

Where the drift velocity, V_{d} = \frac{L}{t_{d} }

V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s

and the Electric field strength, E = \frac{V}{l_{s} }

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec

The electron diffusion coefficient, D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }

\triangle x = (\triangle t )V_{d}, where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3}  }\\\triangle x =0.533 cm

D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s

For the Einstein equation to be satisfied, \frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V

\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV

Verified.

4 0
2 years ago
Other questions:
  • A 16-kg scooter is moving at a speed of 7 m/s. The scooter’s speed doubles. What is the scooter’s kinetic energy when its speed
    5·1 answer
  • What is the equivalent resistance of a circuit that contains four 75.0 resistors connected in series to a 100.0 v battery
    9·2 answers
  • A boy pulls his toy on a smooth horizontal surface with a rope inclined at 60 degrees to the horizontal. If the effective force
    9·2 answers
  • a crate is being lifted into a truck. if it is moved with a 2470n force and 3650 j of work is done , then how far is the crate b
    12·1 answer
  • Two children push on opposite sides of a door during play. Both push horizontally and perpendicular to the door. One child pushe
    9·1 answer
  • A 1500 kg car is pushing a 4000 kg truck. The car and truck are accelerating at 2.0 m/s^2. Assuming that the frictional force on
    13·1 answer
  • A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges with a speed of 90 m/s. Let's as
    14·1 answer
  • Calculate the time taken by the light to pass through a nucleus of diameter 1.56 10 -16 m. (speed of light is 3 10 8 m/s)
    10·1 answer
  • You place a 3.0-m-long board symmetrically across a 0.5-m-wide chair to seat three physics students at a party at your house. If
    9·1 answer
  • An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!