answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvasek [131]
2 years ago
13

Jack tries to place magnets on his refrigerator at home, but they won’t stick. What could be the reason?

Physics
1 answer:
saul85 [17]2 years ago
5 0
The most probable reason why the magnets won't stick on the refrigerator is that the body of the refrigerator and the magnets have like poles. If both have negative or both have positive poles facing each other, they will repel. In principle, magnets are attracted to opposite poles and like poles repel. 
You might be interested in
A uniform Rectangular Parallelepiped of mass m and edges a, b, and c is rotating with the constant angular velocity ω around an
Sonbull [250]

Answer:

(a) k = \frac{Mw^{2} }{6} (a^{2} +b^{2} )

(b)  τ = \frac{M}{3} (a^{2} +b^{2} ) ∝

Explanation:

The moment of parallel pipe rotating about it's axis is given by the formula;

I = \frac{M}{3} (a^{2} +b^{2} )   ---------------------------------1

(a) The kinetic energy of a parallel pipe is also given as;

k =\frac{1}{2} Iw^{2} --------------------------------2

Putting equation 1 into equation 2, we have;

k = \frac{M}{6} (a^{2} +b^{2} )w^{2}

k = \frac{Mw^{2} }{6} (a^{2} +b^{2} )

(b) The angular momentum is given by the formula;

τ = Iw -----------------------3

Putting equation 1 into equation 3, we have

τ = \frac{Mw}{3} (a^{2} +b^{2} )

But

τ = dτ/dt = \frac{M}{3} (a^{2} +b^{2} )\frac{dw}{dt}   ------------------4

where

dw/dt = angular acceleration =∝

Equation 4 becomes;

τ = \frac{M}{3} (a^{2} +b^{2} ) ∝

8 0
1 year ago
THE RELATIVE ANGLE AT THE KNEE CHANGES FROM 0O TO 85O DURING THE KNEE FLEXION PHASE OF A SQUAT EXERCISE. IF 10 COMPLETE SQUATS A
Mice21 [21]

Answer: angular distance = 1700° and 29.7 rad

      also the angular displacement = 0

Explanation:

To explain this, i will give a breakdown of this works.

we are asked to find both the angular distance and displacement the knee undergo.

Ok to get the distance of the knee, we would first take note that for one to squat down and get back up, the knee would travel through 85° of flexion to gpo down, and also through another 85° of extension to return standing (upright). So, the actual angular distance of the squat is 170°.

taking ten squats, the knee would have to go through 170° motion times 10 i.e;

10 * 170° = 1700°

Therefore the angulaar distance is 1700°

now converting this distance to radians since we will be required to have our answer in both degree and rad.

Given that 2pi = 360°, it means that one degree will give 57.3°;

∅ (rad) = ∅ (deg) * 2π/360°

∅ (rad) = 1170° * 2π/360°  = 29.7 rad

∅ (rad) = 29.7 rad

b. For the other part, let us remember that angular displacement is equal to angular distance divided by time, so the angular displacement displacement of the knee will be zero, because the knee's position at the final third will be the same as the initial position.

cheers i hope this helps!!!!

π

5 0
2 years ago
An antibaryon composed of two antiup quarks
Sveta_85 [38]

Answer:

(2) −1 e

Explanation:

A quark is the lightest elementary particles which form hadron such as proton and neutron. A quark has fractional charge.

Up, charm and top quarks have +\frac{2}{3} e charge where as down, strange and bottom quarks have -\frac{1}{3}e charge.

The antiparticle of up quark is antiup quark and has charge -\frac{2}{3}e charge.

The antiparticle of down quark is antidown quark and has charge +\frac{1}{3}e charge.

An antibaryon is composed of two anti-up quark and one anti-down quark.

Net charge of the anti-baryon is:

2\times (-\frac{2}{3} e)+1\times (+\frac{1}{3})e=-1e

Thus, antibaryon has -1e charge.

5 0
2 years ago
Engineers who design battery-operated devices such as cell phones and MP3 players try to make them as efficient as possible. An
Svetradugi [14.3K]


efficiency= [useful energy transferred ÷ total energy supply]×100%

So, [5500÷10000]×100%=0.55×100

                                        =55%

5 0
1 year ago
Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conduc
xxMikexx [17]

Answer: 14.52*10^6 m/s

Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.

the change in potential energy for the electron; e*ΔV is  equal to energy kinetic gained for the electron so:

e*ΔV=1/2*m*v^2  v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s

3 0
1 year ago
Other questions:
  • Which of the following solid fuels has the highest heating value?
    13·2 answers
  • If a magnet is broken into two pieces, what happens to the magnetic poles? One piece will have a north pole, while the other pie
    15·2 answers
  • Given that the internal energy of water at 28 bar pressure is 988 kJ kg–1 and that the specific volume of water at this pressure
    7·1 answer
  • What is the change in length of a 1400. m steel, (12x10^-6)/(C0) , pipe for a temperature change of 250.0 degrees Celsius? Remem
    11·1 answer
  • A vehicle traveling on wet or slick roads can begin to _________ as water forms a barrier between the road and the tires and tra
    5·2 answers
  • For tax and accounting purposes, corporations depreciate the value of equipment each year. One method used is called "linear dep
    10·1 answer
  • Find the electric field inside a hollow plastic ball of radius R that has charge Q uniformly distributed on its outer surface. G
    5·1 answer
  • Some gliders are launched from the ground by means of a winch, which rapidly reels in a towing cable attached to the glider. Wha
    6·1 answer
  • A 4.00-Ω resistor, an 8.00-Ω resistor, and a 24.0-Ω resistor are connected together. (a) What is the maximum resistance that can
    5·1 answer
  • Students use a stretched elastic band to launch carts of known mass horizontally on a track. The elastic bands exert a force F,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!