answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
2 years ago
12

Two speakers both emit sound of frequency 320 Hz, and are in phase. A receiver sits 2.3 m from one speaker, and 2.9 m from the o

ther. What is the phase difference between the two sounds detected by the receiver?
a. 32.3 λλ
b. 0.60 λλ
c. 0.089 λλ
d. 0.29 λλ
e. 0.56 λλ
Physics
1 answer:
satela [25.4K]2 years ago
3 0

Answer:

Option B

Explanation:

The phase difference is found by subtracting the 2.3m for the receiver from the other speaker which is 2.9m hence

Phase difference= 2.9-2.3= 0.6

You might be interested in
A 64.5 kg person steps off a 129 kg rowboat with a force of 34.0 N. What is the force that is applied to the person by the rowbo
Arada [10]
34.0 N which is the force that applied to the person by rowboat.
3 0
2 years ago
a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
shusha [124]

Answer:

Part a) When collision is perfectly inelastic

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b) When collision is perfectly elastic

v_m = \frac{m + M}{2m}\sqrt{5Rg}

Explanation:

Part a)

As we know that collision is perfectly inelastic

so here we will have

mv_m = (m + M)v

so we have

v = \frac{mv_m}{m + M}

now we know that in order to complete the circle we will have

v = \sqrt{5Rg}

\frac{mv_m}{m + M} = \sqrt{5Rg}

now we have

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b)

Now we know that collision is perfectly elastic

so we will have

v = \frac{2mv_m}{m + M}

now we have

\sqrt{5Rg} = \frac{2mv_m}{m + M}

v_m = \frac{m + M}{2m}\sqrt{5Rg}

6 0
2 years ago
3. A large crane lifts a 25,000 kg mass in the air. The amount of work that must be done by the
andreev551 [17]

\mathfrak{\huge{\orange{\underline{\underline{AnSwEr:-}}}}}

Actually Welcome to the concept of Efficiency.

Here we can see that, the Input work is given as 2.2 x 10^7 J and the efficiency is given as 22%

The efficiency is => 22% => 22/100.

so we get as,

E = W(output) /W(input)

hence, W(output) = E x W(input)

so we get as,

W(output) = (22/100) x 2.2 x 10^7

=> W(output) = 0.22 x 2.2 x 10^7 => 0.484 x 10^7

hence, W(output) = 4.84 x 10^6 J

The useful work done on the mass is 4.84 x 10^6 J

5 0
2 years ago
Calculate the current through a 10.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V
Kipish [7]

Answer:

Therefore,

Current through Nichrome wire is 0.3879 Ampere.

Explanation:

Given:

Length = l = 10 meter

Radius = r = 0.321\ mm =0.321\times 10^{-3}\ meter

Resistivity=\rho=1.00\times 10^{-6}\ ohm\ meter

V = 12 Volt

To Find:

Current, I =?

Solution:

Resistance for 0.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V battery given as

R=\dfrac{\rho\times l}{A}

Where,

R = Resistance

l = length

A = Area of cross section = πr²

\rho=Resistivity=1.00\times 10^{-6}\ ohm\ meter

Substituting the values we get

R=\dfrac{1\times 10^{-6}\times 10}{3.14\times (0.321\times 10^{-3})^{2}}

R=\dfrac{1\times 10^{-5}}{3.23\times 10^{-7}}

R=\dfrac{1\times 10^{2}}{3.23}

R=30.95\ ohm

Now by Ohm's Law,

V= I\times R

Substituting the values we get

I=\dfrac{V}{R}=\dfrac{12}{30.95}=0.3876\ Ampere

Therefore,

Current through Nichrome wire is 0.3879 Ampere.

4 0
2 years ago
An electrical conductor is an element with __________ electrons in its outer orbit.
Setler [38]
An electric conductor is an element with free electrons in its outer orbit
5 0
2 years ago
Other questions:
  • An object of mass 5 kilograms is moving across a surface in a straight line with a speed of 3.5 meters/second. What amount of fo
    11·1 answer
  • How did Newton use creativity and logic in his approach to investigating light?
    15·2 answers
  • Which nucleus completes the following equation?
    5·2 answers
  • The diagram shows the electric field around two charged objects. What is the best conclusion about the charges that can be made
    14·2 answers
  • 0.5000 kg of water at 35.00 degrees Celsius is cooled, with the removal of 6.300 E4 J of heat. What is the final temperature of
    8·2 answers
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • 3.00 kg block moving 2.09 m/s right hits a 2.22 kg block moving 3.92 m/s left. afterwards, the 3.00 kg block moves 1.71 m/s left
    11·1 answer
  • I need help plz help me out 10 points!!!!!!!
    6·2 answers
  • ASAP PLEASE HELPPP
    8·1 answer
  • A dragster crosses the finish line with a velocity of 140m/s . Assuming the vehicle maintained a constant acceleration from star
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!