Any two-dimensional vector in cartesian (x,y) coordinates can be broken down into individual horizontal and vertical components using trigonometry. If a train goes up a hill with 15 degree incline at a speed of 22 m/s, the horizontal component is 22cos(15)=21.3 m/s and the vertical component is 22sin(15)=5.5 m/s.
Answer:
The y-component of the normal force is 45.74 N.
Explanation:
Given that,
Mass of the crate, m = 5 kg
Angle with hill, 
We need to find the y component of the normal force. We know that the y component of the normal force is given by :

So, the y-component of the normal force is 45.74 N. Hence, this is the required solution.
Answer:
0.24 kgm²
Explanation:
= length of the bat = 81.3 cm = 0.813 m
= mass of the bat = 0.96 kg
= distance of the center of mass of bat from the axis of rotation = 55.9 cm = 0.559 m
= Period of oscillation = 1.35 sec
= moment of inertia of the bat
Period of oscillation is given as


= 0.24 kgm²
I will discuss what is a gravitational force since no figures are attached or given. An objects weight is dependent upon its location in the universe
because they exhibit gravitational waves. For example, the earth is a massive
planet. Because of its massiveness, it exhibits a strong gravitational force
within it. In turn, the objects near the earth will be attracted to it and
thereby feels a much stronger gravity on earth. That is why bodies of water,
despite its liquid features, stick to the earth. The heavier the body is, the
stronger its gravitational pull. Another example is the Milky Way Galaxy, there is a
gravitational pull because it is to other galaxies. Also, other galaxies are
heavier than the earth and therefore, it is attracted to the Milky Way galaxy
because of its gravitational pull.
Formula for height
<span> r(t) = a/2 t² + v₀ t + r₀
</span><span> where
</span><span> a = acceleration = -32 ft/sec² (gravity)
</span><span> v₀ = initial velocity
</span><span> r₀ = initial height
</span><span> r(t) = -16t² + v₀ t + r₀
</span> <span>Tomato passes window (height = 450 ft) after 2 seconds:
</span><span> r(2) = 450
</span><span> -16(4) + v₀ (2) + r₀ = 450
</span><span> r₀ = 450 + 64 - 2v₀
</span><span> r₀ = 514 - 2v₀
</span><span> Tomato hits the ground (height = 0 ft) after 5 seconds:
</span><span> r(5) = 0
</span><span> -16(25) + v₀ (5) + r₀ = 0
</span> r<span>₀ = 16(25) - 5v₀
</span><span> r₀ = 400 - 5v₀
</span><span>
r₀ = 514 - 2v₀ and r₀ = 400 - 5v₀
</span> <span>514 - 2v₀ = 400 - 5v₀
</span><span> 5v₀ - 2v₀ = 400 - 514
</span> <span>3v₀ = −114
</span><span> v₀ = −38
</span><span> Initial velocity = −38 ft/sec (so tomato was thrown down)
</span><span> (initial height = 590 ft) </span>