Answer:
(a) Angle of incidence for violet is more than the angle of incidence for red
(b) 2.4°
Explanation:
refractive index for violet , v = 1.66
refractive index for red, nR = 1.61
wavelength for violet, λv = 400 nm
wavelength for red, λR = 700 nm
Angle of refraction, r = 30°
(a) Let iv be the angle of incidence for violet.
Use Snell,s law
nv = Sin iv / Sin r
1.66 = Sin iv / Sin 30
Sin iv = 0.83
iv = 56°
Use Snell's law for red
nR = Sin iR / Sin r
where, iR be the angle of incidence for red
1.61 = Sin iR / Sin 30
Sin iR = 0.805
iR = 53.6°
So, the angle of incidence for violet is more than red.
(b) iv - iR = 56° - 53.6° = 2.4°
Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
Answer:
A sample of 5.2 mg decays to .65 mg or to 1/8 of its original amount.
1/8 = 1/2 * 1/2 * 1/2 or 3 half-lives.
3 * 30.07 = 90 yrs for 5.2 mg to decay to .65 mg
You can get these other numbers similarly:
5.2 / .0102 = 510 requires about 9 half-lives which is 30 * 9 = 270 yrs
Answer:
<h2>5.6kW</h2>
Explanation:
Step one:
given
mass m= 24kg
distance moved= 6m
time taken= 4seconds
Step two:
Required
power
but work done is the force applied at a distance, and the power is the work done time the time taken
Work done= F*D
F=mg
W= mg*D
W=24*9.81*6
W=1412.6J
Power P= work * time
P=1412.6*4
p=5650.5W
P=5.6kW