Answer:
kJ/mol
Explanation:
= initial vapor pressure = 45.77 mm Hg
= final vapor pressure = 193.1 mm Hg
= initial temperature = 213.1 K
= final temperature = 243.7 K
= Heat of vaporization
Using the equation


J/mol
kJ/mol
To calculate the acceleration of the wooden block, we use the expression F=ma where F is the force applied, m is the mass of the object and a is the acceleration. We calculate as follows:
F = ma
4.9 = 0.5a
a = 9.8
Hope this answers the question. Have a nice day.
Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge
Answer:
The speed with which the baseball leaves the hand = 20.58 m/s
Explanation:
The time take to reach highest height during a projectile's flight is given by
t = (u sin θ)/g
u = initial velocity of the baseball = ?
θ = angle of throw above the horizontal
g = acceleration due to gravity = 9.8 m/s²
1.05 = (u sin 30)/9.8
u = (1.05 × 9.8)/0.5
u = 20.58 m/s