answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
2 years ago
13

Sir Marvin decided to improve the destructive power of his cannon by increasing the size of his cannonballs. Sir Seymour kept hi

s cannonballs the same size, but improved his powder to provide more velocity. a) Which knight will have the more destructive cannon? Why?
Physics
1 answer:
maria [59]2 years ago
5 0
We really can't tell from the given information. 
We don't know HOW MUCH Marv enlarged his cannonballs,
or HOW MUCH faster Seymour's balls became.

If we assume that they both, let's say, DOUBLED something,
then Seymour accomplished more, and the destructive capability
of his balls has increased more. 

I say that because the destructive capability of a cannonball is
pretty much just its kinetic energy when it arrives and hits the target.
Now, we all know the equation for kinetic energy.

                K.E.  =  (1/2) (mass) (speed-SQUARED) .

We can see right away that if Marv started shooting balls with
double the mass but at the same speed, then they have double
the kinetic energy of the old ones.

But if Seymour started shooting the same balls with double the SPEED,
then they have (2-SQUARED) as much kinetic energy as they used to.

That's 4 times as much destructive capability as before.  

So we can say that when it comes to cannons and their balls and
smashing things to bits and terrorizing your opponents, if making
a bigger mess is better, then more mass is better, but more speed
is better-squared.
You might be interested in
Un cable está tendido sobre dos postes colocados con una separación de 10 m. A la mitad del cable se cuelga un letrero que provo
lisabon 2012 [21]

Answer:

El peso del cartel es 397,97 N

Explanation:

La tensión dada en cada segmento del cable = 2000 N

El desplazamiento vertical del cable = 50 cm = 0,5 m

La distancia entre los polos = 10 m

La posición del letrero en el cable = En el medio = 5

El ángulo de inclinación del cable a la vertical = tan⁻¹ (0.5 / 5) = 5.71 °

El peso del letrero = La suma del componente vertical de la tensión en cada lado del letrero

El peso del signo = 2000 × sin (5.71 grados) + 2000 × sin (5.71 grados) = 397.97 N

El peso del signo = 397,97 N.

8 0
2 years ago
A proton moves along the x-axis with vx=1.0×107m/s. As it passes the origin, what are the strength and direction of the magnetic
Sunny_sXe [5.5K]

Answer:

Magnetic field will be ZERO at the given position

Explanation:

As we know that the magnetic field due to moving charge is given as

B = \frac{\mu_0 qv sin\theta}{4\pi r^2}

so here we know that for the direction of magnetic field we will use

\hat B = \hat v \times \hat r

so we have

\hat B = \hat i \times (\hat i + 0\hat j + 0\hat k)

so magnetic field must be ZERO

So whenever charge is moving along the same direction where the position vector is given then magnetic field will be zero

3 0
2 years ago
Calculate the current through a 10.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V
Kipish [7]

Answer:

Therefore,

Current through Nichrome wire is 0.3879 Ampere.

Explanation:

Given:

Length = l = 10 meter

Radius = r = 0.321\ mm =0.321\times 10^{-3}\ meter

Resistivity=\rho=1.00\times 10^{-6}\ ohm\ meter

V = 12 Volt

To Find:

Current, I =?

Solution:

Resistance for 0.0-m long 22-gauge nichrome wire with a radius of 0.321 mm if it is connected across a 12.0-V battery given as

R=\dfrac{\rho\times l}{A}

Where,

R = Resistance

l = length

A = Area of cross section = πr²

\rho=Resistivity=1.00\times 10^{-6}\ ohm\ meter

Substituting the values we get

R=\dfrac{1\times 10^{-6}\times 10}{3.14\times (0.321\times 10^{-3})^{2}}

R=\dfrac{1\times 10^{-5}}{3.23\times 10^{-7}}

R=\dfrac{1\times 10^{2}}{3.23}

R=30.95\ ohm

Now by Ohm's Law,

V= I\times R

Substituting the values we get

I=\dfrac{V}{R}=\dfrac{12}{30.95}=0.3876\ Ampere

Therefore,

Current through Nichrome wire is 0.3879 Ampere.

4 0
1 year ago
Levi and Clara are trying to move a very heavy box. Levi is pushing the box with a force of 30 N, and Clara is pulling the box w
Komok [63]
There is a ner force of 15 N allowing Levi and Clara to mobe the box.
5 0
2 years ago
Read 2 more answers
A sound is first produced by making something . The sound then travels through a to reach the ears, which are the parts of the b
r-ruslan [8.4K]
A sound is first produced by making something<span> vibrate</span><span>. The sound then travels through a </span><span> medium</span><span> to reach the ears, which are the parts of the body that allow for sounds to be heard.

Vibrate and Medium are the correct answers
</span>
8 0
2 years ago
Read 2 more answers
Other questions:
  • Pressure and volume changes at a constant temperature can be calculated using
    8·1 answer
  • The famous leaning tower of pisa doesn't topple over because its center of gravity is
    14·1 answer
  • A small sphere with mass m carries a positive charge q and is attached to one end of a silk fiber of length L. The other end of
    5·1 answer
  • Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
    7·1 answer
  • Why is it unwise to stir a pot of soup with a metal spoon?
    14·2 answers
  • A sinusoidally-varying voltage V(t)=V0sin(2pift) with amplitude V0 = 10 V and frequency f = 100 Hz is impressed across the plate
    7·1 answer
  • The gold foil experiment led to the conclusion that each atom in the foil was composed mostly of empty space because most alpha
    7·2 answers
  • Isabella deja caer accidentalmente un bolígrafo desde su balcón mientras celebra que resolvió satisfactoriamente un problema de
    12·1 answer
  • The two particles are both moving to the right. Particle 1 catches up with particle 2 and collides with it. The particles stick
    9·1 answer
  • The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!