Answer:
Few millimeter thick aluminium, water, wood, acrylic glass or plastic.
Explanation:
The materials that are best for protection against beta particles are few millimeter thickness of aluminium, but for the high energy beta-particles radiations the low atomic mass materials such as plastic, wood, water and acrylic glass can be used.
These materials can also be used in personal protective equipment which includes all the clothing that can be worn to prevent any injury or illness due to the exposure to radiation.
Answer:
H = 109.14 cm
Explanation:
given,
Assume ,
Total energy be equal to 1 unit
Balance of energy after first collision = 0.78 x 1 unit
= 0.78 unit
Balance after second collision = 0.78 ^2 unit
= 0.6084 unit
Balance after third collision = 0.78 ^3 unit
= 0.475 unit
height achieved by the third collision will be equal to energy remained
H be the height achieved after 3 collision
0.475 ( m g h) = m g H
H = 0.475 x h
H = 0.475 x 2.3 m
H = 1.0914 m
H = 109.14 cm
Answer:
A) F = - 8.5 10² N, B) I = 21 N s
Explanation:
A) We can solve this problem using the relationship of momentum and momentum
I = Δp
in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction
v₀ = 8.50 m / s
v_f = -8.50 m / s
F t = m v_f -m v₀
F =
let's calculate
F =
F = - 8.5 10² N
B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations
v² = v₀² - 2g (y- y₀)
as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0
v =
calculate
v =
v = 14 m / s
to calculate the momentum we use
I = Δp
I = m v_f - mv₀
when it hits the ground its speed drops to zero
we substitute
I = 1.50 (0-14)
I = -21 N s
the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is
I = 21 N s
Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
The two of the following measurements, when taken together, would allow engineers to find the total mechanical energy dissipated during the skid
B. The contact area of each tire with the track.
C. The co-efficent of static friction between the tires and the track.
D. The co-efficent of static friction between the tires and the track.
Explanation: