When you reverse the direction of the current, the current loop generated by the magentic field is revered.
Answer:
C
Explanation:
From above question we know that
A = 6.2 m
f = 1.6 rad/s
t = 3.5 s
x =?
We know that,
x = Acos(2pie ft)
Putting all values in above eq.
x = 6.2 x cos(2x3.142x1.6x3.5)
x = - 4.8
Displacement can never be negative so ignore - sign.
Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:
Answer:
Proton: v=0.689 m/s
Neutron: v=0.688 m/s
Electron: v=1265.078 m/s
Alpha particle: v=0.173 m/s
Explanation:
De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:
λ=
h is the Planck constant: 6.626×10⁻³⁴
We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:
λ=
v=h÷(mλ)
<u>Proton:</u>
m=1.673×10⁻²⁴ g ·
=1.673×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)
v=0.689 m/s
<u>Neutron:</u>
m=1.675×10⁻²⁴ g ·
=1.675×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)
v=0.688 m/s
<u>Electron:</u>
m= 9.109×10⁻²⁸ g ·
=9.109×10⁻³¹ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(9.109×10⁻³¹ kg×575×10⁻⁹m)
v=1265.078 m/s
<u>Alpha particle:</u>
m=6.645×10⁻²⁴ g ·
=6.645×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)
v=0.173 m/s
Answer:
5.5 × 10^14 Hz or s^-1
no orange light has less frequency so no photoelectric effect
Explanation:
hf = hf0 + K.E
HERE h is Planck 's constant having value 6.63 × 10 ^-34 J s
f is frequency of incident photon and f0 is threshold frequency
hf0 = hf- k.E
6.63 × 10 ^-34 × f0 = 6.63 × 10 ^-34× 6.66 × 10^14 - 7.74× 10^-20
6.63 × 10 ^-34 × f0 = 3.64158×10^-19
f0 = 3.64158×10^-19/ 6.63 × 10 ^-34
f0 = 5.4925 × 10^14
f0 =5.5 × 10^14 Hz or s^-1
frequency of orange light is 4.82 × 10^14 Hz which is less than threshold frequency hence photo electric effect will not be observed for orange light