Answer:
The answer is B. When the magnet is placed on a globe to correctly align with Earth’s magnetic field, it is considered to be suspended freely. The Earth has geographical poles as well with North and South poles. Since unlike poles attract, the South Pole of the magnet will be attracted to the geographical North.
Explanation:
Answer: 9938.8 km
Explanation:
1 pound-force = 4.48 N
30.0 pounds-force = 134.4 N
The force of gravitation between Earth and object on the surface of is given by:

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.
At height, h above the surface of the Earth, the weight of the object:

we need to find "h"
taking the ratio of two:

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.
Explanation :
The interaction between two objects is termed as the collision. The collision can be of two types i.e. elastic collision and inelastic collision.
In this case, two identical carts travel at the same speed toward each other, and then a collision occurs. In an inelastic collision, the momentum before and after the collision remains the same but its kinetic energy gets lost.
After the collision, both the object sticks over each other and moves with one velocity.
Out of the given graph, the graph that shows a perfectly inelastic collision is attached. It shows that after the collision both the carts move with the same velocity.
The correct answer to the question is- 
CALCULATION:
As per the question, the electric field generated by the source charge is 1236 N/C at a distance of 4 m.
Hence , electric field E = 1236 N/C.
The distance of the point R = 4m
We are asked to calculate the charge possessed by the source.
The electric field produced by a source charge of Q at a distance R is calculated as -
Electric field E = 
Here,
is called the absolute permittivity of the free space.
Hence, the charge of source is calculated as -
Q = 
= 
= 
= 
= 
Hence, the charge of source is 
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s