Body waves
Explanation:
A shear wave(S-wave) is a type of seismic body waves that shakes the ground back and forth perpendicular to the direction the wave is moving.
- Seismic waves are elastic waves usually generated when there is a disturbance within the earth.
- There are two types of seismic waves:
Surface waves
Body waves
- Body waves travel within the earth and they cause disturbances there. P and S waves are the two types of body waves that we have.
- Surface waves travels on the earth surface. They are the love and rayleigh waves. They are the ones that cause destruction on the earth surface during an earthquake.
Learn more:
Earthquake brainly.com/question/6520403
#learnwithBrainly
Answer:
Explanation:
b ) First is concave lens with focal length f₁ = - 12 cm .
object distance u = - 20 cm .
Lens formula
1 / v - 1 / u = 1 / f
1 / v + 1 / 20 = -1 / 12
1 / v = - 1 / 20 -1 / 12
= - .05 - .08333
= - .13333
v = - 1 / .13333
= - 7.5 cm
first image is formed before the first lens on the side of object.
This will become object for second lens
distance from second lens = 7.5 + 9 = 16.5 cm
c )
For second lens
object distance u = - 16.5 cm
focal length f₂ = + 12 cm ( lens is convex )
image distance = v
lens formula ,
1 / v - 1 / u = 1 / f₂
1 / v + 1 / 16.5 = 1 / 12
1 / v = 1 / 12 - 1 / 16.5
= .08333- .0606
= .02273
v = 1 / .02273
= 44 cm ( approx )
It will be formed on the other side of convex lens
distance from first lens
= 44 + 9 = 53 cm .
magnification by first lens = v / u
= -7.5 / -20 = .375 .
magnification by second lens = v / u
= 44 / - 16.5
= - 2.67
d )
total magnification
= .375 x - 2.67
= - 1.00125
height of final image
= 2.50 mm x 1.00125
= 2.503mm
e )
The final image will be inverted with respect to object because total magnification is negative .
Answer with Explanation:
We are given that
Radius of solid core wire=r=2.28 mm=

Radius of each strand of thin wire=r'=0.456 mm=
Current density of each wire=
a.Area =
Where 
Using the formula
Cross section area of copper wire has solid core =
Current density =
Using the formula


Total number of strands=19
Area of strand wire=




b.Resistivity of copper wire=
Length of each wire =6.25 m
Resistance, R=
Using the formula
Resistance of solid core wire=
Resistance of strand wire=
Answer:
There is 148.35 Joules of heat is released in the process.
Explanation:
Given that,
Heat capacity of the object, 
Initial temperature, 
Final temperature, 
We need to find the amount of heat released in the process. It is a concept of heat capacity. The heat released in the process is given by :

Let the mass of the object is 10 g or 0.01 kg
So,

Q = 148.35 Joules
So, there is 148.35 Joules of heat is released in the process. Hence, this is the required solution.
Answer: The power is 156 watt
Explanation:
is in the attachment