Answer:
8.40 m/s
Explanation:
Slope of the plot is 0.119
Slope of a plot is given by the change in y direction divided by the change in x direction
Here, the y axis represents inverse wavelength and the x axis represents frequency.
f = Frequency (Hz, assumed)
v = Phase velocity (m/s, assumed)
λ = Wavelength (m, assumed)
So, slope

Now,


The speed of sound travelling in the tube is 8.40 m/s
Since the system itself is giving off heat, this is a
reduction in the internal energy.
heat = - 25,000 J
Since work is being done on the system, therefore it is
an additional energy to the system. Work is given as:
work = - P dV
work = - 1.50 atm (6 L – 12 L)
work = 9 L atm
Since it is given that 1 L atm is equivalent to 101.3 J,
therefore the total energy added is:
energy due to work = 9 L atm (101.3 J / 1 L atm)
energy due to work = 911.7 J
Therefore the total change in internal energy is the sum
of heat and energy due to work:
Change in internal energy = - 25,000 J + 911.7 J
Change in internal energy = - 24,088.3 J
<span>Therefore, approximately 24.1 kJ of energy is lost by the
system in the total process.</span>
<span>
</span>
<span>Answer:</span>
<span>-24.1 kJ</span>
Answer:
Tension in the string will increase
Explanation:
As we know that tension in the string at any angle with the vertical is given as

now we have

also we know that
angular speed of the stone is directly depending on the time period of the motion
so it is given as

since the frequency of the revolution is increased from n = 1 rev/s to 2 rev/s
so the angular speed would be doubled
So here we can say that
tension in the string will increase when we will increase the frequency of revolution.
To solve this problem we will apply the concepts related to gravity according to the Newtonian definitions. From finding this value we will use the linear motion kinematic equations to find the time. Our values are
Comet mass 
Radius 
Rock was dropped from a height 'h' from surface = 1m
The relation for acceleration due to gravity of a body of mass 'm' with radius 'r' is

Where G means gravitational universal constant and M the mass of the planet


Now calculate the value of the time




The time taken for the rock to reach the surface is t = 87.58s
When carrying extra weight, the space formed between the top of your head and the two axles of the motorcycle is called "load triangle". Because of a motorcycle's size and weight<span> and the fact that it has only two wheels, how to carry extra load is very important. One has to make sure that they are keeping the weight low and close to the middle of the motorcycle and keep the load evenly from side to side. Heavier items should be in the "load triangle".</span><span> </span>