answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
2 years ago
9

A 0.600-mm diameter wire stretches 0.500% of its length when it is stretched with a tension of 20.0 n. what is the young's modul

us of this wire?
Physics
1 answer:
Rashid [163]2 years ago
3 0
The Young modulus is given by:
E= \frac{F /A}{\Delta L / L_0}
where
F is the force applied
L_0 is the initial length of the wire
A is the cross-sectional area of the wire
\Delta L is the stretch of the wire

The wire in the problem stretches by 0.5% of its length, this means 
\frac{\Delta L}{L_0}  = 0.005

We can also calculate the area of the wire; its radius is in fact half the diameter:
r= \frac{d}{2}= \frac{0.600 mm}{2}=0.300 mm=0.3 \cdot 10^{-3} m
and so the area is
A=\pi r^2 = \pi (0.3 \cdot 10^{-3} m)^2 = 2.83 \cdot 10^{-7} m^2

We know the force applied to the wire, F=20 N, so now we have everything to calculate the Young modulus:

E=  \frac{F/A}{\Delta L / L_0} = \frac{20 N/(2.83 \cdot 10^{-7} m^2)}{0.005}=1.42 \cdot 10^{10} N/m^2
You might be interested in
An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
puteri [66]

Answer: 15.8

Explanation:

You are given that the

Object distance U = 32 cm

Focal length F = 30.1 cm

First calculate the image distance V by using the formula

1/F = 1/U + 1/V

Substitute F and V into the formula

1/30.1 = 1/32 + 1/V

1/V = 1/30.1 - 1/32

1/V = 0.00197259

Reciprocate both sides

V = 506.94 cm

Magnification M is the ratio of image distance to object distance.

M = V/U

substitute the values of V and U into the formula

M = 506.94/32

M = 15.8

Therefore, the magnification of the image is 15.8 or approximately 16.

6 0
2 years ago
In a power plant, pipes transporting superheated vapor are very common. Superheated vapor flows at a rate of 0.3 kg/s inside a p
grigory [225]

Answer:h=160.84 W/m^2-K

Explanation:

Given

mass flow rate=0.3 kg/s

diameter of pipe=5 cm

length of pipe=10 m

Inside temperature=22

Pipe surface =100

Temperature drop=30

specific heat of vapor(c)=2190 J/kg.k

heat supplied Q=mc\Delta T=0.3\times 2190\times (30)

Heat due to convection =hA(100-30)

A=\pi d\cdot L

A=\pi 0.05\times 10=1.571 m^2

Q_{convection}=h\times 1.571\times (100-22)=122.538 h

Q=Q_{convection}

19,710=122.538 h

h=160.84 W/m^2-K

5 0
2 years ago
A projectile is launched at an angle of 60° from the horizontal and at a velocity of
gayaneshka [121]

Answer:

60*12.0= 720 = v/60 * 12.0 squared which is 1,728

Explanation:

Horizontal velocity component: Vx = V * cos(α)

5 0
2 years ago
If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =
crimeas [40]

<u>Answer:</u>

 Velocity of rock after 2 seconds = 6.56 m/s

<u>Explanation:</u>

 We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

Here height of rock in meters, h = 14t-1.86t^2

Comparing both the equations

    We will get initial velocity = 14 m/s(already given) and \frac{1}{2} a = -1.86

     So,  Acceleration, a = -3.72 m/s^2

 Now we have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

 When time is 2 seconds we need to find final velocity.

     v = 14 - 3.72 * 2 = 6.56 m/s.

  So, Velocity of rock after 2 seconds = 6.56 m/s  

6 0
2 years ago
If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the fr
Dmitriy789 [7]

Answer:

Frequency will be equal to 5.20 kHz

So option (c) will be correct answer

Explanation:

We have given value of capacitance C=8.5nF=8.5\times 10^{-9}f

Potential difference across capacitor V = 12 volt

Current through capacitor i=3.33mA=3.33\times 10^{-3}A

Capacitive reactance will be equal to X_c=\frac{V}{i}=\frac{12}{3.33\times 10^{-3}A}=3603.60ohm

Capacitive reactance is equal to X_c=\frac{1}{\omega C}

3603.60=\frac{1}{\omega\times  8.5\times 10^{-9}}

\omega =32647.091rad/sec

2\pi f=32647.091

f=5198.98Hz

f = 5.20 kHz

So frequency will be equal to 5.20 kHz

So option (c) will be correct answer

3 0
2 years ago
Other questions:
  • 1. I drop a penny from the top of the tower at the front of Fort Collins High School and it takes 1.85 seconds to hit the ground
    8·1 answer
  • In which scenario is an animal doing work? Check all that apply.
    15·2 answers
  • About three billion years ago, single-celled organisms called cyanobacteria lived in Earth’s oceans. They thrived on the ocean’s
    12·2 answers
  • The first law of thermodynamics states that ___. when a process converts energy from one form to another, some energy converted
    8·2 answers
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    15·1 answer
  • At a processing plant, olive oil of density 875 kg/m3 flows in a horizontal section of hose that constricts from a diameter of 3
    14·1 answer
  • The same fluid flows through four different branching pipes. It enters each pipe from the left with the same speed, v0, and flow
    13·1 answer
  • A large semi-truck, with mass 31x crashes into a small sedan with mass x . If the semi-truck exerts a force F on the sedan, what
    13·1 answer
  • This is a problem about a child pushing a stack of two blocks along a horizontal floor. The masses of the blocks, and the coeffi
    13·1 answer
  • Irrigation channels that require regular flow monitoring are often equipped with electromagnetic flowmeters in which the magneti
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!