answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
2 years ago
12

A floating leaf oscillates up and down two complete cycles in one second as a water wave passes by. The wave's wavelength is 10

meters. What is the wave's speed?A) 40 m/s
B) 2 m/s
C) 20 m/s
D) 10 m/s
E) more than 40 m/s
Physics
1 answer:
postnew [5]2 years ago
7 0

Answer:

C) 20 m/s

Explanation:

Wave: A wave is a disturbance that travels through a medium and transfers energy from one point to another, without causing any permanent displacement of the medium itself. Examples of wave are, water wave, sound wave, light rays, radio waves. etc.

The velocity of a moving wave is

v = λf ............................ Equation 1

Where v = speed of the wave, λ = wave length, f = frequency of the wave.

Given: f = 2 Hz (two complete cycles in one seconds), λ = 10 meters

Substituting these values into equation 1

v = 2×10

v = 20 m/s.

Thus the speed of the wave = 20 m/s

The right option is C) 20 m/s

You might be interested in
Which type of listening response includes the use of head nods, facial expressions, and short utterances such as "uh-huh" that s
BARSIC [14]
This type of listening response is called back-channel signal. This allows the speaker to know that the listener is attentive or willing to engage a conversation between them. It is shown through short utterances, facial expressions, head nods and others. 
4 0
2 years ago
An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
Natali [406]

Answer:

1.38*10^18 kg

Explanation:

According to the Newton's law of universal gravitation:

F=G*\frac{m_a*m_p}{r^2}

where:

G= Gravitational constant (6.674×10−11 N · (m/kg)2)

ma= mass of the astronaut

mp= mass of the planet

F=m_a.a\\(v_f )^2=(v_o)^2+2.a.\Delta y\\\\a=\frac{(v_f)^2-(v_o)^2}{2.\Delta y}\\\\a=\frac{(0)^2-(4.29m/s)^2}{2.0.64m}=14.38m/s^2\\\\F=m_a*14.38m/s^2

so:

m_a*14.38m/s^2=(6.674*10^{-11}N.(m/kg)^2)*\frac{m_a.m_p}{(2.530*10^3m)^2}\\m_p=\frac{14.38m/s^2(2.530*10^3m)^2}{(6.674*10^{-11}N.(m/kg)^2)}\\\\m_p=1.38*10^{18}kg

7 0
2 years ago
A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant o
olya-2409 [2.1K]

Answer:

y= 240/901 cos 2t+ 8/901 sin 2t

Explanation:

To find mass m=weighs/g

  m=8/32=0.25

To find the spring constant

Kx=mg    (given that c=6 in and mg=8 lb)

K(0.5)=8               (6 in=0.5 ft)

K=16 lb/ft

We know that equation for spring mass system

my''+Cy'+Ky=F  

now by putting the values

0.25 y"+0.25 y'+16 y=4 cos 20 t  ----(1) (given that C=0.25 lb.s/ft)

Lets assume that at steady state the equation of y will be

y=A cos 2t+ B sin 2t

To find the constant A and B we have to compare this equation with equation 1.

Now find y' and y" (by differentiate with respect to t)

y'= -2A sin 2t+2B cos 2t

y"=-4A cos 2t-4B sin 2t

Now put the values of y" , y' and y in equation 1

0.25 (-4A cos 2t-4B sin 2t)+0.25(-2A sin 2t+2B cos 2t)+16(A cos 2t+ B sin 2t)=4 cos 20 t

So by comparing the coefficient both sides

30 A+ B=8

A-30 B=0

So we get

A=240/901 and B=8/901

So the steady state response

y= 240/901 cos 2t+ 8/901 sin 2t

6 0
2 years ago
A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. where should one hang a mass of 0.50 kg to balance the stick?
Tcecarenko [31]
The weight of the meterstick is:
W=mg=0.20 kg \cdot 9.81 m/s^2 = 1.97 N
and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance 
d_1 = 0.50 m - 0.40 m=0.10 m
from the pivot.
The torque generated by the weight of the meterstick around the pivot is:
M_w = W d_1 = (1.97 N)(0.10 m)=0.20 Nm

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:
(mg) d_2 = 0.20 Nm
from which we find the value of d2:
d_2 =  \frac{0.20 Nm}{mg}= \frac{0.20 Nm}{(0.5 kg)(9.81 m/s^2)}=0.04 m

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
4 0
2 years ago
A small mass m is tied to a string of length L and is whirled in vertical circular motion. The speed of the mass v is such that
adell [148]

Answer:

(mv^2/R)/(mg)=1/2

v^2=R/2g

7 0
2 years ago
Other questions:
  • A ball is released from a tower at a height of 100 meters toward the roof of another tower that is 25 meters high. The horizonta
    13·1 answer
  • The power of a red laser (λ = 630 nm) is 3.25 watts (abbreviated w, where 1 w = 1 j/s). how many photons per second does the las
    9·1 answer
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • When holes are drilled through the wall of a water tower, water will spurt out the greatest horozontal distance from the hole cl
    11·1 answer
  • A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 9.
    11·1 answer
  • A 480 g peregrine falcon reaches a speed of 69 m/s in a vertical dive called a stoop. If we assume that the falcon speeds up und
    7·1 answer
  • A new technology company is marketing drones for residential use. The bar graph shows the relation between number of sales and t
    12·1 answer
  • A tuning fork is sounded above a resonating tube (one end closed), which resonates at a length of 0.20 m and again at 0.60 m. If
    9·1 answer
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • A 15.0 g bullet traveling horizontally at 865 m>s passes through a tank containing 13.5 kg of water and emerges with a speed
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!