Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
156.8 Joules of energy is in the box's gravitational potential energy store
<u>Explanation</u>:
<em>Given:</em>
Mass of the box Dane is holding = 8 Kilograms
Height at which Dane is holding the box above the ground= 2 metres
<em>To Find:</em>
Gravitational potential energy in the box=?
<em>Solution:</em>
gravitational potential energy is the work done per mass on a object to move that object from one fixed location to to another location against gravity.Its unit is joules or J
Thus Gravitational potential energy is represented as,

where
is the gravitational potential energy
m is the mass
h is the height
g is the gravitational force( 9.8
)
Now substituting the given values,


An action-reaction pair would be a pair in which one of the elements exerts a force on the other element (action), and then the other element would respond to this force by exerting another force in the opposite direction (reaction).
From the given choices, we will see that:
For choice A, the moon exerts a force on the earth by pulling it (action) and the earth responds to this force by pulling the moon (reaction in opposite direction of the action).
Therefore, the correct choice would be:
A. <span>The Moon Pulls on Earth, and Earth pulls back on the moon.</span>
Answer:
Explanation:
total weight acting downwards
= 3g + 10g
13 g
volume of lead = 10 / 11.3 = .885 cm³
Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber = v x 1 x g
Buoyant force on lead = .885 x 1 x g
total buoyant force = vg + .885 g
For floating
vg + .885 g = 13 g
v = 12.115 cm³
total volume of bobber
= 4/3 x 3.14 x 2³
= 33.5 cm³
fraction of volume submerged
= 12.115 / 33.5
= .36
= 36 %