Answer:

Explanation:
Given that
J(r) = Br
We know that area of small element
dA = 2 π dr
I = J A
dI = J dA
Now by putting the values
dI = B r . 2 π dr
dI= 2π Br² dr
Now by integrating above equation


Given that
B= 2.35 x 10⁵ A/m³
r₁ = 2 mm
r₂ = 2+ 0.0115 mm
r₂ = 2.0115 mm

By putting the values


Answer:
Energy resources can be measured. They will include the fossil fuels, geothermal and hydroelectric potential, and increasingly the renewable resources. When the US list is compared to the World it is considered energy Rich. When Japan's list is compared to the world standard it considered energy poor.
A changing technology like nuclear fusion could substantially change the assessment.
Japan does not have any substantial, oil, coal, gas, deposits, while the US does.
Explanation:
Answer:
The change in gravitational potential energy of the hiker = 2869685 J
Explanation:
Potential Energy: This is the energy possessed by a body, due to its change in position in the gravitational field. The unit of potential energy is Joules (J)
From the question,
Change in gravitational potential energy = Energy of the hiker at the top of Mt. Whitney - Energy of the hiker at the floor of Death valley.
ΔEp = mgh₂ - mgh₁
ΔEp = mg(h₂-h₁)........................... Equation 1
Where ΔEp = change in Potential Energy of the hiker, m = mass of the hiker, g = acceleration due to gravity, h₁ = lowest point in Death valley, h₂ = Elevation of Mt. Whitney.
Given: m = 65.0 kg, h₁ = -85 m ( because is a valley), h₂ = 4420 m,
Constant: g = 9.8 m/s²
Note: The h₁ is negative because is below sea level.
Substituting into equation 1
ΔEp = 65×9.8×[4420-(-85)]
ΔEp = 637(4420+85)
ΔEp = 637(4505)
ΔEp = 2869685
ΔEp = 2869685 J.
Thus the change in gravitational potential energy of the hiker = 2869685 J
Answer:
C. Both reach the bottom at the same time.
Explanation:
For a rolling object down an inclined plane , the acceleration is given below
a = g sinθ / (1 + k² / r² )
θ is angle of inclination , k is radius of gyration , r is radius of the cylinder
For cylindrical object
k² / r² = 1/2
acceleration = g sinθ /( 1 + 1/2 )
= 2 g sinθ / 3
Since it does not depend upon either mass or radius , acceleration of both the cylinder will be equal . Hence they will reach the bottom simultaneously.
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz