answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
2 years ago
7

A baseball of mass m = 0.49 kg is dropped from a height h1 = 2.25 m. It bounces from the concrete below and returns to a final h

eight of h2 = 1.38 m. Neglect air resistance. Randomized Variables m = 0.49 kg h1 = 2.25 m h2 = 1.38 m show answer No Attempt 33% Part (a) Select an expression for the impulse I that the baseball experiences when it bounces off the concrete.
Physics
1 answer:
Brilliant_brown [7]2 years ago
6 0

Answer:

Explanation:

Impulse = change in momentum

mv - mu , v and u are final and initial velocity during impact at surface

For downward motion of baseball

v² = u² + 2gh₁

= 2 x 9.8 x 2.25

v = 6.64 m / s

It becomes initial velocity during impact .

For body going upwards

v² = u² - 2gh₂

u² = 2 x 9.8 x 1.38

u = 5.2 m / s

This becomes final velocity after impact

change in momentum

m ( final velocity - initial velocity )

.49 ( 5.2 - 6.64 )

= .7056 N.s.

Impulse by floor in upward direction

= .7056 N.s

You might be interested in
Light is propagated as a transverse wave. For this reason, sunglasses, ski goggles and camera lenses can restrict the vibration
Flura [38]

Polerization is the anwser

6 0
2 years ago
Read 2 more answers
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
zhenek [66]

Complete Question

The complete question is shown on the first uploaded image

Answer:

Force on each hand is 196.22 N

Force on each foot is 95.8 N

Explanation:

In order to get a better understanding of this question let us explain some concepts

Normal Force:

We can define normal force Fn as that type of force which makes a 90 degree angle with the surface on which it is exerted.

Torque:

We can define torque as the moment of forces that tends to produce or cause rotation

From the question we are given that

Weight of body is (W) = 584 N

The normal force on both hands (Ha) = ?

The normal force on both legs (Lg) = ?

Looking at the diagram the person is at equilibrium so

                 584 = Ha + Lg

an also this mean that torques acting on the body is balanced

         So,   0.410 Ha  = 0.840 Lg

    Making Lg the subject of formula in the equation above we

   Lg = 0.4881 Ha

 Considering the first equation and replacing Lg with this recent equation we have

                      584 = Ha + 0.4881 Ha

          Therefore Ha = 392.44 N

This value obtained is  for both hands for each hand we divide by 2

Therefore we have for each hand = 392.44/2 =196.55 N

Since we have been able to get the force on both hands we can substitute it in to the equation where we made Lg the subject of formula and we have

             Lg = 0.4881 ×  392.44

                  = 191.22 N

The value above is the force on both legs to obtain the force on each leg we have

                  191.22/2 = 95.8 N.

8 0
2 years ago
An object moving with a speed of 35M/s and has a kinetic energy of 1500 J what is the mass of the object
Lelu [443]

2.45 Kg

Explanation:

K.E = 0.5 mv^2

1500 = 0.5 × m × (35)^2

1500= m × 0.5 × 1225

1500 = m × 612.5

1500/612.5 = m

2.45 = m

m = 2.45kg

7 0
2 years ago
A 69.0 kg ice skater moving to the right with a velocity of 2.61 m/s throws a 0.22 kg snowball to the right with a velocity of 2
Luda [366]

Answer:

0.08m/s

Explanation:

Given data

M1= 69kg

v1= 2.61m/s

M2= 0.22kg

v2= 25.2m/s

Before snowball is thrown:

Total mass of skater + snowball = 69+ 0.22 = 69.22kg

Total Momentum of skater + snowball = mv = 69.22 x 2.61 = 180.7 kgm/s

After snowball is thrown:

Let's call the velocity of the skater V.

Total momentum = momentum of skater + momentum of snowball

=69.22V + (5.544)

= 69.22V + 5.544

So:

180.7  = 69.22V+5.544

180.7- 5.544= 69.22V

175.156= 69.22V

V= 175.156/69.22

V = 2.53m/s

The total momentum after catching the snowball is mV or:

(69.0 + 0.22) x V

So:

5.544= 69.22V

V= 5.544/69.22

V=0.08m/s

The velocity of the ice skater after throwing the snowball is 0.08m/s

4 0
1 year ago
Other questions:
  • A Federation starship (8.5 ✕ 106 kg) uses its tractor beam to pull a shuttlecraft (1.0 ✕ 104 kg) aboard from a distance of 14 km
    10·1 answer
  • A 1.0 kg object is attached to a string 0.50 m. It is twirled in a horizontal circle above the ground at a speed of 5.0 m/s. A b
    6·1 answer
  • By reacting, an element that does not have a complete set of valence electrons can acquire an electron configuration similar to
    12·2 answers
  • Essam is abseiling down a steep cliff. How much gravitational potential energy does he lose for every metre he descends? His mas
    10·2 answers
  • The energy difference between the 5d and the 6s sublevels in gold accounts for its color. If this energy difference is about 2.7
    6·1 answer
  • The dielectric strength of rutile is 6.0 × 106 V/m, which corresponds to the maximum electric field that the dielectric can sust
    13·2 answers
  • You have a device that needs a voltage reference of 3.0 V, but you have only a 9.0 V battery. Fortunately, you also have several
    12·2 answers
  • 8. An unpowered flywheel is slowed by a constant frictional torque. At time t = 0 it has an angular velocity of 200 rad/s. Ten s
    7·1 answer
  • Two equal length of wire made of the same material but of different diameters have an effective resistance of 0.8 ohm when they
    9·1 answer
  • A car is traveling with speed v0 when it begins to speed up at a rate of Δv every second. After t1 seconds, the car travels with
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!