Answer:
It will sink
Explanation:
An object in the water can float only if its density is lower than the density of the water.
In fact, for an object completely immersed in water, there are two forces acting on it:
- Its weight,
, downward, where
is the density of the object, V its volume and g the gravitational acceleration
- The buoyant force,
, upwards, there
is the density of the water
We see that when the density of an object is larger than the density of the water,
, the weight is greater than the buoyant force,
, so the object sinks.
In this case, the rock has a density of 1.73 g/cm3, while water has a density of 1.0 g/cm^3, so the rock will sink.
Answer:
d = Δv(t2-t1)
Explanation:
Speed is defined as the change of displacement with respect to time. It is expressed as shown;
Speed = change in displacement/change in time
Δv = d/Δt
d = Δv*Δt
d = ΔvΔt
Δt = t2-t1
d = Δv(t2-t1)
Δv is the change in rate of speed
Δt = change in time
The correct expression for the displacement of the car during this motion is d = Δv(t2-t1)
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
Answer:
6.05 cm
Explanation:
The given equation is
2 aₓ(x-x₀)=( Vₓ²-V₀ₓ²)
The initial head velocity V₀ₓ =11 m/s
The final head velocity Vₓ is 0
The accelerationis given by =1000 m/s²
the stopping distance = x-x₀=?
So we can wind the stopping distance by following formula
2 (-1000)(x-x₀)=[
]
x-x₀=6.05*
m
=6.05 cm
Answer: 6.48m/s
Explanation:
First, we know that Impulse = change in momentum
Initial velocity, u = 19.8m/s
Let,
Velocity after first collision = x m/s
Velocity after second collision = y m/s
Also, we know that
Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).
5700 = 1500(19.8 - x)
5700 = 29700 - 1500x
1500x = 29700 - 5700
1500x = 24000
x = 24000/1500
x = 16m/s
Also, at the second guard rail. impulse = ft, so that
Impulse = 79000 * 0.12
Impulse = 9480
This makes us have
Impulse = m(x - y)
9480 = 1500(16 -y)
9480 = 24000 - 1500y
1500y = 24000 - 9480
1500y = 14520
y = 14520 / 1500
y = 9.68
Then, the velocity decreases by 3.2, so that the final velocity of the car is
9.68 - 3.2 = 6.48m/s