answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
1 year ago
6

The energy difference between the 5d and the 6s sublevels in gold accounts for its color. If this energy difference is about 2.7

eV (electron volt; 1 eV = 1.602 × 10−19 J), calculate the wavelength of light absorbed in the transition of an electron from the 5d subshell to the 6s subshell. Round the answer to the correct number of significant figures.
Physics
1 answer:
Anastaziya [24]1 year ago
8 0

Answer:

The wavelength of light absorbed in the transition is 459 nm.

Explanation:

Energy difference between 5-d and the 6-s sub-levels in gold = ΔE

\Delta E=2.7 eV=2.7 eV\times 1.602\times 10^{-19} J=4.3254\times 10^{-19} J

Let the wavelength of light absorbed in the transition 5-d to 6-s be \lambda

The relation between energy and wavelength is given by:

E=\frac{h\times c}{\lambda}

where,

E = energy of photon of the light

h = Planck's constant = 6.63\times 10^{-34}Js

c = speed of light = 3\times 10^8m/s

\lambda = wavelength of the photon

4.3254\times 10^{-19} J=\frac{6.63\times 10^{-34}Js\times 3\times 10^8 m/s}{\Lambda }

\Lambda =4.59\times 10^{-7} m = 459 nm

1nm = 10^{-9 } nm

The wavelength of light absorbed in the transition is 459 nm.

You might be interested in
The robot arm is elevating and extending simultaneously. At a given instant, θ = 30°, ˙ θ = 10 deg / s = constant θ˙=10 deg/s=co
motikmotik

Explanation:

The position vector r:

\overrightarrow{r(t)}=lcos\theta\hat{i}+lsin\theta\hat{j}

The velocity vector v:

\overrightarrow{v(t)}=\overrightarrow{\frac{dr}{dt}}=\dot{l}cos\theta-lsin\theta\dot{\theta}\hat{i}+\dot{l}sin\theta+lcos\theta\dot{\theta}\hat{j}

The acceleration vector a:

\overrightarrow{a(t)}}=cos\theta(\ddot{l}-l\dot{\theta}^2)-sin\theta(2\dot{l}\dot{\theta}+l\ddot{\theta})\hat{i}+cos\theta(2\dot{l}\dot{\theta}+l\ddot{\theta})+sin\theta(\ddot{l}-l\dot{\theta}^2)\hat{j}

\overrightarrow{v(t)}=0.13\hat{i}+0.18\hat{j}

\overrightarrow{a(t)}}=-0.3\hat{i}-0.1\hat{j}

5 0
1 year ago
What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
andrew11 [14]

Answer:

Explanation:

The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.

From the given  question, we are to determine the direction of the magnetic field bnet at a point A.

Also, having the notion that  the currents in the two wires have equal magnitudes, Then:

\bar{B_{net}} = \bar{B_1} + \bar{B_2}

\bar{B_{net}} = \frac{\mu_oI}{2 \pi r } \bar {k}+ \frac{\mu_oI}{2 \pi r } \bar {k}

\bar{B_{net}} = \frac{2 \mu_oI}{2 \pi r } \bar {k} \ out

Thus; \bar{B_{net}} points out of the screen at A.

6 0
1 year ago
Kayla and her friends are setting up chairs for a school play each row will contain the same number of chairs Kayla knows that t
LUCKY_DIMON [66]

Answer:

96=8*c

Explanation:

4 0
1 year ago
A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.
Airida [17]

Answer:

Part A :  E =   \frac{1}{4\pi}ε₀ Q₁/R₁² Volt/meter

Part B :  V =  \frac{1}{4\pi}ε₀ Q₁/R₁ Volt

Explanation:

Given that,

Charge distributed on the sphere is Q₁

The radius of sphere is R

₁

The electric potential at infinity is 0

<em>Part A</em>

The space around a charge in which its influence is felt is known in the electric field. The strength at any point inside the electric field is defined by the force experienced by a unit positive charge placed at that point.  

If a unit positive charge is placed at the surface it experiences a force according to the Coulomb law is given by

                          F = \frac{1}{4\pi}ε₀ Q₁/R₁²

Then the electric field at that point is

                                   E =  F/1

                            E =  \frac{1}{4\pi}ε₀ Q₁/R₁²  Volt/meter

Part B

The electric potential at a point is defined as the amount of work done in moving a unit positive charge from infinity to that point against electric forces.

Thus, the electric potential at the surface of the sphere of radius R₁ and charge distribution Q₁ is given by the relation

                           V =  \frac{1}{4\pi}ε₀ Q₁/R₁  Volt

4 0
1 year ago
A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flie
cluponka [151]

Answer:

a) v₃ = 19.54 km, b)  70.2º north-west

Explanation:

This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition

vector 1 moves 26 km northeast

let's use trigonometry to find its components

         cos 45 = x₁ / V₁

         sin 45 = y₁ / V₁

         x₁ = v₁ cos 45

         y₁ = v₁ sin 45

         x₁ = 26 cos 45

         y₁ = 26 sin 45

         x₁ = 18.38 km

         y₁ = 18.38 km

Vector 2 moves 45 km north

        y₂ = 45 km

Unknown 3 vector

          x3 =?

          y3 =?

Vector Resulting 70 km north of the starting point

           R_y = 70 km

we make the sum on each axis

X axis

      Rₓ = x₁ + x₃

       x₃ = Rₓ -x₁

       x₃ = 0 - 18.38

       x₃ = -18.38 km

Y Axis

      R_y = y₁ + y₂ + y₃

       y₃ = R_y - y₁ -y₂

       y₃ = 70 -18.38 - 45

       y₃ = 6.62 km

the vector of the third leg of the journey is

         v₃ = (-18.38 i ^ +6.62 j^ ) km

let's use the Pythagorean theorem to find the length

         v₃ = √ (18.38² + 6.62²)

         v₃ = 19.54 km

to find the angle let's use trigonometry

           tan θ = y₃ / x₃

           θ = tan⁻¹ (y₃ / x₃)

           θ = tan⁻¹ (6.62 / (- 18.38))

           θ = -19.8º

with respect to the x axis, if we measure this angle from the positive side of the x axis it is

          θ’= 180 -19.8

          θ’= 160.19º

I mean the address is

          θ’’ = 90-19.8

          θ = 70.2º

70.2º north-west

3 0
2 years ago
Other questions:
  • if a volcano spews a 500-kg rock vertically upward a distance of 500m. what was its velocity when it left the volcano? if the vo
    9·1 answer
  • A constant torque of 200Nm turns a wheel about its centre. The moment of inertia of it about the axis is 100kgm^s . Find the kin
    13·2 answers
  • Which correctly identifies the parts of a transverse wave? A: crest B: amplitude C: wavelength D: trough A: trough B: amplitude
    10·2 answers
  • A single slit forms a diffraction pattern, with the first minimum at an angle of 40.0° from central maximum, when monochromatic
    8·1 answer
  • It takes Venus 225 days to orbit the sun. If the Earth-sun distance is 1.5 × 10^11 m, what
    7·1 answer
  • A diver named Jacques observes a bubble of air rising from the bottom of a lake (where the absolute pressure is 3.50 atm) to the
    5·1 answer
  • A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +α, where
    15·1 answer
  • Anjali's plane had been flying through calm skies (no wind) with a velocity (speed and direction) vector <img src="https://tex.z
    11·1 answer
  • You are an engineer in charge of designing a new generation of elevators for a prospective upgrade to the Empire State Building.
    5·1 answer
  • A rock is thrown down from the top of a cliff with a velocity of 3.61 m/s (down). The cliff is 28.4 m above the ground. Determin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!