Explanation:
The position vector r:

The velocity vector v:

The acceleration vector a:



Answer:
Explanation:
The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.
From the given question, we are to determine the direction of the magnetic field bnet at a point A.
Also, having the notion that the currents in the two wires have equal magnitudes, Then:



Thus;
points out of the screen at A.
Answer:
Part A : E =
ε₀ Q₁/R₁² Volt/meter
Part B : V =
ε₀ Q₁/R₁ Volt
Explanation:
Given that,
Charge distributed on the sphere is Q₁
The radius of sphere is R
₁
The electric potential at infinity is 0
<em>Part A</em>
The space around a charge in which its influence is felt is known in the electric field. The strength at any point inside the electric field is defined by the force experienced by a unit positive charge placed at that point.
If a unit positive charge is placed at the surface it experiences a force according to the Coulomb law is given by
F =
ε₀ Q₁/R₁²
Then the electric field at that point is
E = F/1
E =
ε₀ Q₁/R₁² Volt/meter
Part B
The electric potential at a point is defined as the amount of work done in moving a unit positive charge from infinity to that point against electric forces.
Thus, the electric potential at the surface of the sphere of radius R₁ and charge distribution Q₁ is given by the relation
V =
ε₀ Q₁/R₁ Volt
Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west