answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
butalik [34]
2 years ago
15

A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +α, where

a is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α.
(a) Calculate the electric field in terms of +α and the distance r from the axis of the tube for
(i) r < a; (ii) a < r < b; (iii) r > b. Show your results in a graph of E as a function of r.
(b) What is the charge per unit length on (i) the inner surface of the tube and (ii) the outer surface of the tube?

Physics
1 answer:
patriot [66]2 years ago
7 0

Answer:

A) i) E =α/ [2πrL(εo)]

ii) E=0

iii) E = α/(πrεo)

The graph between E and r for the 3 cases is attached to this answer ;

B) i) charge on the inner surface per unit length = - α

ii) charge per unit length on the outer surface = 2α

Explanation:

A) i) For r < a, the charge is in the cavity and takes a shape of the cylinder. Thus, applying gauss law;

EA = Q(cavity) / εo

Now, Qcavity = αL

So, E(2πrL) = αL/εo

Making E the subject of the formula, we have;

E =α/ [2πrL(εo)]

ii) For a < r < b; since the distance will be in the bulk of the conductor, therefore, inside the conductor, the electric field will be zero.

So, E=0

iii) For r > b; the total enclosed charge in the system is the difference between the net charge and the charge in the inner surface of the cylinder.

Thus, Qencl = Qnet - Qinner

Qinner will be the negative of Qnet because it should be in the opposite charge of the cavity in order for the electric field to be zero. Thus;

Qencl = αL - (-αL) = 2αL

Thus, applying gauss law;

EA = Qencl / εo

Thus, E = Qencl / Aεo

E = 2αL/Aεo

Since A = 2πrL,

E = 2αL/2πrLεo = α/(πrεo)

B) i) The charge on the cavity wall must be the opposite of the point charge. Therefore, the charge per unit length in the inner surface of the tube will be - α

ii)Net charge per length for tube is +α and there is a charge of - α on the inner surface. Thus charge per unit length on the outer surface will be = +α - (- α) = 2α

You might be interested in
Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
Nutka1998 [239]
I made the drawing in the attached file.

I included two figures.

The upper figure shows the effect of:

- multiplying vector A times 1.5.
 It is drawn in red with dotted line.

- multiplying vector B times - 3 .
It is drawn in purple with dotted line.

In the lower figure you have the resultant vector: C = 1.5A - 3B.

The method is that you translate the tail of the vector -3B unitl the point of the vector 1,5A, preserving the angles.

Then you draw the arrow that joins the tail of 1,5A with the point of -3B after translation.

The resultant arrow is the vector C and it is drawn in black dotted line.
 
Download pdf
7 0
2 years ago
Read 2 more answers
The howler monkey is the loudest land animal and, under some circumstances, can be heard up to a distance of 8.9 km. Assume the
exis [7]

Answer:

113.7

Explanation:

maximum distance (s) = 8.9 km

reference intensity (I0) = 1 x 10^{-12} W/m^{2}

power of a juvenile howler monkey (p) = 63 x 10^{-6} W

distance (r) = 210 m

intensity (I) = power/area

where we assume the area of a sphere due to the uniformity of the output in all directions

area = 4πr^{2} =  4π x 210^{2} = 554,176.9 m^{2}

intensity (I) = \frac{63 x 10^{-6} }{554,176.9} = 113.7 x 10^{-12}

therefore the desired ratio I/I0 = \frac{113.7 x 10^{-12}}{1 x 10^{-12}} = 113.7

7 0
2 years ago
Consider two less-than-desirable options. In the first you are driving 30 mph and crash head-on into an identical car also going
DerKrebs [107]

Answer:

The impact force will be same for both the cases.

Explanation:

The rate of change of momentum is known as the Impulse and is given by:

I = \frac{\Delta p}{\Delta t}

where

I = Impulse

\Delta p = change in momentum

\Delta t = time interval

Now,

In first case both the cars are identical and have same velocity and in the second case, the wall is stationary.

Also, in both the cases the car does not bounces off the things it hit.

Thus

\Delta p = 0 - m\times v = - mv

Thus

Impact force, F = \frac{\Delta p}{\Delta t} = \frac{m\Delta v}{\Delta t}

Therefore, impact force is same for both the cases.

5 0
2 years ago
Read 2 more answers
Bears eat fruits such as berries and animals such as fish. They hibernate in the winter. They give birth to live young . Which o
bulgar [2K]

Answer:

Bears are consumers

Explanation:

7 0
2 years ago
Each shot of the laser gun most favored by Rosa the Closer, the intrepid vigilante of the lawless 22nd century, is powered by th
mote1985 [20]

Answer:

U = 1794.005 × 10⁶ J

Explanation:

Data provided;

Capacitance of the original capacitor, C = 1.27 F

Potential difference applied to the original capacitor, V = 59.9 kV

= 59.9 × 10³ V

Now,

The Potential energy (U) for the capacitor is calculated as:

Potential energy of the original capacitor, U = \frac{\textup{1}}{\textup{2}}  × C × V²

on substituting the respective values, we get

U = \frac{\textup{1}}{\textup{2}}  × 1.27 × ( 59.9 × 10³ )²

or

U = 1794.005 × 10⁶ J

7 0
2 years ago
Other questions:
  • A circuit is supplied with 60 VDC and contains two series resistors with values of 100 and 400 . What is the total current in th
    9·1 answer
  • The starter armature is rubbing on the field coils. technician a says the bushings need to be replaced. technician b says the br
    13·2 answers
  • Find the wavelength of the ultrasonic wave emitted by a bat if it has a frequency of 4.0 * 10^4 Hz.
    14·2 answers
  • A 5.0-g marble is released from rest in the deep end of a swimming pool. An underwater video reveals that its terminal speed in
    11·1 answer
  • A 2 kg stone moves with a speed of 1 m/s. A second 2 kg stone is moving twice as fast. Compare their kinetic energies.
    6·2 answers
  • The two structural members, one of which is in tension and the other in compression, exert the indicated forces on joint O. Dete
    10·1 answer
  • A hiker walks due east for a distance of 25.5 km from her base camp. On the second day, she walks 41.0 km northwest till she dis
    7·1 answer
  • Albert presses a book against a wall with his hand. As Albert gets tired, he exerts less force, but the book remains in the same
    6·1 answer
  • A ball of unknown mass m is tossed straight up with initial speed v. At the moment it is released, the ball is a height h above
    5·1 answer
  • A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!