Given that,
Current = 4 A
Sides of triangle = 50.0 cm, 120 cm and 130 cm
Magnetic field = 75.0 mT
Distance = 130 cm
We need to calculate the angle α
Using cosine law




We need to calculate the angle β
Using cosine law




We need to calculate the force on 130 cm side
Using formula of force



We need to calculate the force on 120 cm side
Using formula of force


The direction of force is out of page.
We need to calculate the force on 50 cm side
Using formula of force


The direction of force is into page.
Hence, The magnitude of the magnetic force on each of the three sides of the loop are 0 N, 0.1385 N and 0.1385 N.
Answer:
The torque on the child is now the same, τ.
Explanation:
- It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
- In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
- The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of the mass of the child times the square of the distance to the center.
- When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

- When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

- Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:
τ = 3/4*m*r² * (2α) = 3/2*m*r²
same result than in (2), so the torque remains the same.
efficiency= [useful energy transferred ÷ total energy supply]×100%
So, [5500÷10000]×100%=0.55×100
=55%
Answer:
C.
Explanation:
A meter is 8.56 centimeters longer than a yard. Something to keep in mind is that a meter is about 10% longer than a yard.
Hope this helps :)