Answer:
The expression of gravitational field due to mass
at a distance 
Explanation:
We have given mass is 
Distance of the point where we have to find the gravitational field is 
Gravitational constant G
We have to find the gravitational filed
Gravitational field is given by 
This will be the expression of gravitational field due to mass
at a distance 
Answer:

Explanation:
As we know that the equation of SHM is given as

here we know that

here we have

now we have


now we have

now at t = 2.3 s we have


Answer:
The current is 2.0 A.
(A) is correct option.
Explanation:
Given that,
Length = 150 m
Radius = 0.15 mm
Current density
We need to calculate the current
Using formula of current density


Where, J = current density
A = area
I = current
Put the value into the formula


Hence, The current is 2.0 A.
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
#1
Volume of lead = 100 cm^3
density of lead = 11.34 g/cm^3
mass of the lead piece = density * volume


so its weight in air will be given as

now the buoyant force on the lead is given by


now as we know that


so by solving it we got
V = 11.22 cm^3
(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N
(iii) Buoyant force = 0.11 N
(iv)since the density of lead block is more than density of water so it will sink inside the water
#2
buoyant force on the lead block is balancing the weight of it




(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight = 11.11 N
(iii) Buoyant force = 11.11 N
(iv) since the density of lead is less than the density of mercury so it will float inside mercury
#3
Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid