Answer:
The work done is 360 J.
Explanation:
Given that,
Mass = 50 kg
Distance =3 m
We need to calculate the work done
The work done is equal to the product of force and displacement.
Using formula of work done


Where, F = force
D = distance
θ = Angle between force and displacement
Put the value into the formula


Hence, The work done is 360 J.
The only force on the system is the mass of the hoop F net = 2.8kg*9.81m/s^2 = 27.468 N The mass equal of the rolling sphere is found by: the sphere rotates around the contact point with the table.
So by applying the theorem of parallel axes, the moment of inertia of the sphere is computed by:I = 2/5*mR^2 for rotation about the center of mass + mR^2 for the distance of the axis of rotation from the center of mass of the sphere.
I = 7/5*mR^2 M = 7/5*m
Therefore, linear acceleration is computed by:F/m = 27.468 / (2.8 + 1/2*2 + 7/5*4) = 27.468/9.4 = 2.922 m/s^2
I assume it woukd be higher energy light waves. when fire is at its hottest state its blue because its burning off so much.
Felectric = q*E
<span> Ftranslational = m*a
</span><span> Felectric = Ftranslational
</span> <span>q*E = m*a
</span><span> Solve for a
</span><span> a = q/m*E </span>
<span> Our sign convention is "up is positive"
</span><span> q = 1.6*10^-19 C
</span><span> m = 1.67*10^-27 kg
</span><span> E = -150 N/C (- because it is down and up is positive)
</span> a =<span>
-6,4*10^5</span><span> m/s^2 (downward)
</span> answer
a = -6,4*10^5 m/s^2 (downward)
-3 m/s
---------
per min
oh I think 8m/s to 3m/s to 0m/s
idk probably -0.08