Answer: the speed at which it falls toward the Earth.
Explanation:
A bullet travelling across Earth's surface with some horizontal velocity is classical example of projectile motion.
Projectile motion is an idealization of the motion under the action of gravity neglecting the influence of the air (no drag force nor friction).
This kind of motion is the result of two independent motions: vertical motion and horizontal motion.
The observed net velocity is the vectorial sum of the vertical and horizontal velocities.
The horizontal velocity is constant, since there is not any force acting in the horizontal axis. Thi is, the object, following the first Law of Newton (inertia law) tends to continue in uniform rectilinear movement (with zero acceleration).
The vertical velocity, this is the velocity at which the bullet falls toward the Earth, is influenced (accelerated) by the action of the gravity of the Earth. So, the vertical velocity is accelerated by the pull of the Earth.
Vertical and horizontal velocities are independent of each other, which means that the speed or the magnitude of the horizontal velocity does not affect the speed at which an object (the bullet) falls toward the Earth.
Complete question:
The classic Goodyear blimp is essentially a helium balloon— a big one, containing 5700 m³ of helium. If the envelope and gondola have a total mass of 4300 kg, what is the maximum cargo load when the blimp flies at a sea-level location? Assume an air temperature of 20°C.
Answer:
52.4 kN
Explanation:
The helium at 20°C has a density of 0.183 kg/m³, and the cargo load is the weight of the system, which consists of the envelope, the gondola, and the helium.
The helium mass is the volume multiplied by the density, thus:
mHe = 5700 * 0.183 = 1043.1 kg
The total mass is then 5343.1 kg. The weight is the mass multiplied by the gravity acceleration (9.8 m/s²), so:
W = 5343.1*9.8
W = 53362.38 N
W = 52.4 kN
It is required an infinite work. The additional electron will never reach the origin.
In fact, assuming the additional electron is coming from the positive direction, as it approaches x=+1.00 m it will become closer and closer to the electron located at x=+1.00 m. However, the electrostatic force between the two electrons (which is repulsive) will become infinite when the second electron reaches x=+1.00 m, because the distance d between the two electrons is zero:

So, in order for the additional electron to cross this point, it is required an infinite amount of work, which is impossible.
The velocity of projectile has 2 components, horizontal component vcosθ and vertical component vsinθ, where v is the velocity of projection and θ is the angle between +ve X-axis and projectile motion.
In case 1, θ = 90⁰
So horizontal component is vcos90 = 0
Vertical component at maximum height = 0
So velocity at maximum height = 0 m/s
In case 2, θ = 45⁰
So horizontal component is 141cos45 = 100m/s
Vertical component at maximum height = 0
So velocity at maximum height = 100 m/s
Answer:
A) The magnitude of current is
2.59 A
B) The direction is clockwise
Explanation:
Please find the attached files for the solution