Answer:
Final Velocity = √(eV/m)
Explanation:
The Workdone, W, in accelerating a charge, 2e, through a potential difference, V is given as a product of the charge and the potential difference
W = (2e) × V = 2eV
And this work is equal to change in kinetic energy
W = Δ(kinetic energy) = ΔK.E
But since the charge starts from rest, initial velocity = 0 and initial kinetic energy = 0
ΔK.E = ½ × (mass) × (final velocity)²
(Velocity)² = (2×ΔK.E)/(mass)
Velocity = √[(2×ΔK.E)/(mass)]
ΔK.E = W = 2eV
mass = 4m
Final Velocity = √[(2×W)/(4m)]
Final Velocity = √[(2×2eV)/4m]
Final Velocity = √(4eV/4m)
Final Velocity = √(eV/m)
Hope this Helps!!!
Answer:
514 cal
Explanation:
In order to calculate the lost heat by the amount of water you first take into account the following formula:
(1)
Q: heat lost by the amount of water = ?
m: mass of the water
c: specific heat of water = 1cal/g°C
T2: final temperature of water = 11°C
T1: initial temperature = 12°C
The amount of water is calculated by using the information about the density of water (1g/ml):

Then, you replace the values of all parameters in the equation (1):

The amount of water losses a heat of 514 cal
Answer:reactant,active site,enzyme below,substrate,products
Explanation:
The amplitude of a wave corresponds to its maximum oscillation of the wave itself.
In our problem, the equation of the wave is
![y(x,t)= (0.750cm)cos(\pi [(0.400cm-1)x+(250s-1)t])](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%20%280.750cm%29cos%28%5Cpi%20%5B%280.400cm-1%29x%2B%28250s-1%29t%5D%29)
We can see that the maximum value of y(x,t) is reached when the cosine is equal to 1. When this condition occurs,

and therefore this value corresponds to the amplitude of the wave.
Answer:
Maximum height the atmosphere pressure can support the
water=10.336 m
Explanation:
We know that ,

Case 1 - Mercury in the tube

Case 2 - Water in the tube

Since atmospheric pressure is same
.
or, 

∴ 
Hence height of the water column =10.336 m