Answer:
A. 0.432
B. -1.92
C. 1.44 units/second
D. -3.2 units/second
Explanation:
A. To calculate her x position, we just use the following equation of motion to find the distance traveled:

here s = displacement
t = time (in seconds)
a = acceleration
Solving for the distance, we get:

s = 0.432 m
Since 0.432 meters east is equals to 0.432 meter in the positive x-direction, the x position is also 0.432.
B. Since the skater has a constant v - velocity of -3.2 m/s, (south means negative y axis), the total distance traveled is:
Distance = speed * time = -3.2 * 0.6 = -1.92 m
The answer is -1.92 units in the y-axis.
C. The x velocity component is the final speed in the east direction, which is going to be:


v = 1.44 units/second (in positive x direction)
D. Her y velocity component does not change, since the velocity towards the south is a constant 3.2 m/s
Thus the answer is -3.2 units/second in the y-axis.
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
Answer: They are all true
a. The tension in the rope is everywhere the same.
b. The magnitudes of the forces exerted on the two objects by the rope are the same.
c. The forces exerted on the two objects by the rope must be in opposite directions.
d. The forces exerted on the two objects by the rope must be in the direction of the rope.
Hope this helps, now you know the answer and how to do it. HAVE A BLESSED AND WONDERFUL DAY! As well as a great rest of Black History Month! :-)
- Cutiepatutie ☺❀❤