answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
2 years ago
13

A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if t

he upper electrode is 17.8 V more positive than the lower electrode. The density of the oil is 885kg/m3. Part A What is the droplet's mass? Express your answer to two significant figures and include the appropriate units. m m = nothing nothing Request Answer Part B What is the droplet's charge? Express your answer to two significant figures and include the appropriate units. q q = nothing nothing Request Answer Part C Does the droplet have a surplus or a deficit of electrons? How many? Does the droplet have a surplus or a deficit of electrons? How many? deficit 9 electrons surplus 9 electrons surplus 16 electrons deficit 7 electrons
Physics
1 answer:
Arisa [49]2 years ago
3 0

A) 2.4\cdot 10^{-16}kg

The radius of the oil droplet is half of its diameter:

r=\frac{d}{2}=\frac{0.80 \mu m}{2}=0.40 \mu m = 0.4\cdot 10^{-6}m

Assuming the droplet is spherical, its volume is given by

V=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.4\cdot 10^{-6} m)^3=2.68\cdot 10^{-19} m^3

The density of the droplet is

\rho=885 kg/m^3

Therefore, the mass of the droplet is equal to the product between volume and density:

m=\rho V=(885 kg/m^3)(2.68\cdot 10^{-19} m^3)=2.4\cdot 10^{-16}kg

B) 1.5\cdot 10^{-18}C

The potential difference across the electrodes is

V=17.8 V

and the distance between the plates is

d=11 mm=0.011 m

So the electric field between the electrodes is

E=\frac{V}{d}=\frac{17.8 V}{0.011 m}=1618.2 V/m

The droplet hangs motionless between the electrodes if the electric force on it is equal to the weight of the droplet:

qE=mg

So, from this equation, we can find the charge of the droplet:

q=\frac{mg}{E}=\frac{(2.4\cdot 10^{-16}kg)(9.81 m/s^2)}{1618.2 V/m}=1.5\cdot 10^{-18}C

C) Surplus of 9 electrons

The droplet is hanging near the upper electrode, which is positive: since unlike charges attract each other, the droplet must be negatively charged. So the real charge on the droplet is

q=-1.5\cdot 10^{-18}C

we can think this charge has made of N excess electrons, so the net charge is given by

q=Ne

where

e=-1.6\cdot 10^{-19}C is the charge of each electron

Re-arranging the equation for N, we find:

N=\frac{q}{e}=\frac{-1.5\cdot 10^{-18}C}{-1.6\cdot 10^{-19}C}=9.4 \sim 9

so, a surplus of 9 electrons.

You might be interested in
A group of students must conduct an experiment to determine how the location of an applied force on a classroom door affects the
schepotkina [342]

Answer:

the answer the correct one is the  d

Explanation:

In the gate rotation experiment several things are measured.

- the distance from the hinges to the applied force, which must be measured with a tape measure

- The value of the force that is devised with a dynamometer

- the rotated angle that is measured with a protractor

- the time it takes to turn an angle, which is measured with a stopwatch

When examining the answer the correct one is the  d

8 0
2 years ago
A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.0 g plastic bead, with a charg
marissa [1.9K]

Answer:

Please find the answer in the explanation

Explanation:

Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.

Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.

We can therefore conclude that the upper plate, is positively charged

B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC

3 0
2 years ago
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
2 years ago
You are given a material which produces no initial magnetic field when in free space. when it is placed in a region of uniform m
mamaluj [8]
The correct answer is:
<span>paramagnetism 

In fact, paramagnetic materials, when they are placed in a magnetic field, they form an internal magnetic field parallel to the external one and in the same direction. However, unlike ferromagnetic materials, they do not retain their magnetization, so when the external magnetic field is removed, their internal induced magnetic field disappears.</span>
7 0
2 years ago
A horizontal spring with spring constant 85 n/m extends outward from a wall just above floor level. a 3.5 kg box sliding across
Rina8888 [55]

k = spring constant of the spring = 85 N/m

m = mass of the box sliding towards the spring = 3.5 kg

v = speed of box just before colliding with the spring = ?

x = compression the spring = 6.5 cm = 6.5 cm (1 m /100 cm) = 0.065 m

the kinetic energy of box just before colliding with the spring converts into the spring energy of the spring when it is fully compressed.

Using conservation of energy

Kinetic energy of spring before collision = spring energy of spring after compression

(0.5) m v² = (0.5) k x²

m v² = k x²

inserting the values

(3.5 kg) v² = (85 N/m) (0.065 m)²

v = 0.32 m/s

8 0
2 years ago
Other questions:
  • Iron(II) carbonate (FeCO3) has a solubility product constant of 3.13 x 10-11 . Calculate the molar solubility of FeCO3 in water
    11·1 answer
  • The use of air bags in cars reduces the force of impact by a factor of 110.(The resulting force is only as great.) What can be s
    15·2 answers
  • Alyssa is carrying a water balloon while running down a field at a speed of 14 m/s. She tosses the water balloon forward toward
    9·2 answers
  • Two blocks a and b ($m_a&gt;m_b$) are pushed for a certain distance along a frictionless surface. how does the magnitude of the
    7·1 answer
  • A skydiver finds that she speeds up when she holds her arms close to her body. What does this do?
    5·2 answers
  • A 1.0-kg ball has a velocity of 12 m/s downward just before it strikes the ground and bounces up with a velocity of 12 m/s upwar
    6·1 answer
  • The nucleus of an atom has all of the following characteristics except that it
    5·1 answer
  • A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k
    7·1 answer
  • Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the sp
    8·1 answer
  • A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!