answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vazorg [7]
2 years ago
5

Describe each class of lever and explain to characteristics of each

Physics
2 answers:
Nataly [62]2 years ago
8 0

-- Class I lever

The fulcrum is between the effort and the load.

The Mechanical Advantage can be anything, more or less than 1 .

Example:  a see-saw

-- Class II lever

The load is between the fulcrum and the effort.

The Mechanical Advantage is always greater than 1 .

Example:  a nut-cracker, a garlic press

-- Class III lever

The effort is between the fulcrum and the load.

The Mechanical Advantage is always less than 1 .

I can't think of an example right now.

harina [27]2 years ago
6 0

Answer:

First Class of Lever: In this, Fulcrum is always changes the direction of the input force and can be used to increase the force or the distance. Second Class of Lever: In this, Fulcrum does not change direction of the input force & Output force is greater than the input force. Third Class of Lever: In this, the input force is between the fulcrum and the load does not change the direction of the input force. Here, Output force is less than input force.

Explanation:

You might be interested in
You and your friend Peter are putting new shingles on a roof pitched at 20degrees . You're sitting on the very top of the roof w
Anit [1.1K]

Answer:

v₀ =3.8 m/s

Explanation:

Newton's second law of the box:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Known data

m=2.1 kg  mass of the box

d= 5.4m  length of the roof

θ = 20° angle θ of the roof with respect to the horizontal direction

μk= 0.51 : coefficient of kinetic friction between the box and the roof  

g = 9.8 m/s² : acceleration due to gravity

Forces acting on the box

We define the x-axis in the direction parallel to the movement of the box on the roof  and the y-axis in the direction perpendicular to it.

W: Weight of the box  : In vertical direction

N : Normal force : perpendicular to the direction the  roof

fk : Friction force: parallel to the direction to the roof

Calculated of the weight  of the box

W= m*g  =  (2.1 kg)*(9.8 m/s²)= 20.58 N

x-y weight components

Wx= Wsin θ= (20.58)*sin(20)° =7.039 N

Wy= Wcos θ =(20.58)*cos(20)°= 19.34 N

Calculated of the Normal force

∑Fy = m*ay    ay = 0

N-Wy= 0

N=Wy =19.34 N

Calculated of the Friction force:

fk=μk*N= 0.51* 19.34 N = 9.86 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

Wx-f = ( 2.1)*a

7.039 - 9.86  = ( 2.1)*a

-2.821 = ( 2.1)*a

a=(-2.821) /( 2.1)

a= -1.34  m/s²

Kinematics of the box

Because the box moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d Formula (2)

Where:  

d:displacement  = 5.4 m

v₀: initial speed  

vf: final speed  = 0

a : acceleration of the box = -1.34  m/s²

We replace data in the formula (2)

0²=v₀²+2*(-1.34)*(5.4)

2*(1.34)*(5.4)= v₀²

v_{o} =\sqrt{14.472}

v₀ = 3.8 m/s

7 0
2 years ago
Levi and Clara are trying to move a very heavy box. Levi is pushing the box with a force of 30 N, and Clara is pulling the box w
Komok [63]
There is a ner force of 15 N allowing Levi and Clara to mobe the box.
5 0
2 years ago
Read 2 more answers
Scientific knowledge builds upon previous knowledge."
notka56 [123]

Answer:

B

Explanation:

Magic

4 0
2 years ago
You are driving downhill on a rural road with a 3% grade at a speed of 45 mph. While playing on the side of the road, a child ac
Dennis_Churaev [7]

Answer: a) 95.07m b) 81.88 m

Explanation:

a)

For finding the distance when vehicle is going downhill we have the formula as:

Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)

Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31

Reaction time= 0.28

So putting values we get

Stop sight distance= 0.28*72.4 *1  + \frac{(0.28*72.4)^{2} }{2*9.81*(0.31-0.03)}

Stop sight distance= 95.07 m

b)

For finding the distance when vehicle is going uphill we have the formula as:

Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)

Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31

Reaction time= 0.28

So putting values we get

Stop sight distance= 0.28*72.4 *1  + \frac{(0.28*72.4)^{2} }{2*9.81*(0.31+0.03)}

Stop sight distance= 81.88 m

5 0
2 years ago
When a gas is rapidly compressed (say, by pushing down a piston) its temperature increases. When a gas expands against a piston,
shusha [124]

Answer:

Explained in explanation

Explanation:

The first law of thermodynamics states that the change in internal energy of a system(ΔU) is equal to the sum of the net heat transfer into the system(Q) and the net work done on the system(W). In equation, this law is;

ΔU = Q + W

Now, when there's gas inside a container with a movable piston that's tightly fitting, we will assume that the piston can move up and down thereby compressing the gas or allowing the gas to expand against it.

Now these gas molecules inside the container possess kinetic energy. Thus, the internal energy(U) of the system is simply the sum of all the kinetic energies of the individual gas molecules present in the container.

Therefore, if the temperature(T) of the gas increases, then the speed and internal energy(U) of the gas molecules will also increase. In the same way, if the temperature of the gas decreases, the speed and internal energy of the gas molecules would also decrease.

Now, back to the question, when the piston is pushed down, it does work on the gas and the gas does negative work on the piston. Thus, the gas will be get compressed to a smaller space, and thereby making the gas molecules to hit the piston at a faster rate. Thus, there is a decrease in speed and as we saw earlier that when there is a decrease in speed, it means temperature has decreased.

Whereas, when the piston is moved up, the gas does positive work on the piston and the speed of the gas molecules will increase. Like I said earlier that increase in speed means increase in temperature.

4 0
2 years ago
Other questions:
  • An object is moving in the plane according to these parametric equations:
    7·2 answers
  • Shutting the fluid discharge of an air-operated reciprocating pump will cause the pump to ?
    9·2 answers
  • A 10 kg brick and a 1 kg book are dropped in a vacuum. The force of gravity on the 10 kg brick is what?
    7·2 answers
  • The energy difference between the 5d and the 6s sublevels in gold accounts for its color. If this energy difference is about 2.7
    6·1 answer
  • Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of t
    8·1 answer
  • The strength of the gravitational field of a source mass can be measured by the magnitude of the acceleration due to gravity at
    14·1 answer
  • 16) A wheel of moment of inertia of 5.00 kg-m2 starts from rest and accelerates under a constant torque of 3.00 N-m for 8.00 s.
    15·2 answers
  • An elephant's legs have a reasonably uniform cross section from top to bottom, and they are quite long, pivoting high on the ani
    9·1 answer
  • A proton is released from rest at the positive plate of a parallel-plate capacitor. It crosses the capacitor and reaches the neg
    12·1 answer
  • A 3030 cmcm wrench is used to loosen a bolt with a force applied 0.30.3 mm from the bolt. It takes 6060 NN to loosen the bolt wh
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!