answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
2 years ago
12

The work function for tungsten metal is 4.52eV a. What is the cutoff (threshold) wavelength for tungsten? b. What is the maximum

kinetic energy of the electrons when radiation of wavelength 198nm is used? c. It is observed that the electrons may be prohibited from reaching the anode by applying a stopping potential. What is the stopping potential in the case when radiation of wavelength 198nm is used?
Physics
1 answer:
Tanya [424]2 years ago
5 0

Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V

Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:

h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.

In order to calculate the cutoff wavelength we have to consider that Ek=0

in this case  h*ν=W

(h*c)/λ=4.52 eV

λ= (h*c)/4.52 eV

λ= (1240 eV*nm)/(4.52 eV)=274.34 nm

From this h*ν = Ek+W;  we can calculate the kinetic energy for a radiation wavelength of 198 nm

then we have

(h*c)/(λ)-W= Ek

Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV

Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this  acts to slow down the ejected electrons from the catode.

You might be interested in
A Roller Derby Exhibition recently came to town. They packed the gym for twoconsecutive weekend nights at South's field house. O
Alla [95]

Answer:

14.4 m/s

Explanation:

mass of Anna (Ma) = 68 kg

speed of Anna (Va) = 17 m/s

mass of SandraDay (Ms) = 76 kg

speed of SandraDay (Vs) = 12 m/s

We can find their speed (V) immediately after collision from the conservation of momentum where

(Ma x Va) + (Ms + Vs) = (Ma + Ms) x V

where V = speed immediately after collision

(68 x 17) + (76 + 12) = (68 + 76) x V

2068 = 144 V

V = 2068 / 144 = 14.4 m/s

8 0
2 years ago
A baseball player runs 27.4 meters from the
sleet_krkn [62]
6.0 m longer because the player ran 3 and came back 3 at the very end, which looks like he went nowhere but in reality he ran 6.
6 0
2 years ago
Read 2 more answers
A ping-pong ball weighs 0.025 N. The ball is placed inside a cup that sits on top of a vertical spring. If the spring is compres
kondor19780726 [428]

Answer:

Explanation:

The energy stored in the spring is used to throw the ball upwards . Let the height reached be h

stored energy of spring = 1/2 k y² , k is spring constant and y is compression created in the spring

stored energy of spring = potential energy of the ball

1/2 k y² = mgh , m is mass of the ball , h is height attained by ball

.5 k x .055² = .025  x 2.84

.0015125 k = .071

k = .071 / .0015125

= 46.9 N / m .

4 0
2 years ago
A rock is rolling down a hill. At position 1, it’s velocity is 2.0 m/s. Twelve seconds later, as it passes position 2, it’s velo
mr Goodwill [35]

Answer

Hi,

correct answer is {D} 3.5 m/s²

Explanation

Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.

Acceleration is calculated by the equation =change in velocity/change in time

a= {velocity final-velocity initial}/(change in time)

a=v-u/Δt

The units for acceleration is meters per second square m/s²

In this example, initial velocity =2.0m/s⇒u

Final velocity=44.0m/s⇒v

Time taken for change in velocity=12 s⇒Δt

a= (44-2)/12  = 42/12

3.5 m/s²

Best Wishes!

5 0
2 years ago
A pendulum is made of a small sphere of mass 0.250 kg attached to a lightweight string 1.20 m in length. As the pendulum swings
forsale [732]

Answer:v=2 m/s

Explanation:

Given

Length of string L=1.2 m

mass of pendulum m=0.25 kg

maximum inclination with vertical \theta =34

vertical Rise of Pendulum from its mean position  is given by

\Delta h=L(1-\cos \theta )

Conserving Energy at top and bottom point

Potential Energy of sphere is converted into kinetic energy of sphere

mgL(1-\cos \theta )=\frac{mv^2}{2}

v=\sqrt{2gL(1-\cos \theta )}

v=\sqrt{2\times 9.8\times 1.2(1-\cos 34)}

v=\sqrt{4.021}

v=2 m/s

5 0
2 years ago
Other questions:
  • What do wind turbines, hydroelectric dams, and ethanol plants have in common?
    7·2 answers
  • Thermals created by warm air rising and cold air sinking are called___?
    11·1 answer
  • Choose the option below that best completes this sentence: when two circuit elements (e.g., light bulbs, resistors, etc.) are in
    7·1 answer
  • The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
    7·1 answer
  • A long-distance swimmer is able to swim through still water at 4.0 km/h. She wishes to try to swim from Port Angeles, Washington
    5·1 answer
  • A stationary boat in the ocean is experiencing waves from a storm. The waves move at 59 km/h and have a wavelength of 145 m . Th
    15·1 answer
  • How can promoting total person development can benefit an organization.
    15·2 answers
  • Our eyes are typically 6 cm apart. Suppose you are somewhat unique, and yours are 9.50 cm apart. You see an object jump from sid
    7·1 answer
  • A +4.0- μC charge is placed on the x axis at x = +3.0 m, and a −2.0- μC charge is located on the y axis at y = −1.0 m. Point A i
    9·1 answer
  • A balloon and a mass are attached to a rod that is pivoted at P.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!