Answer:
14.4 m/s
Explanation:
mass of Anna (Ma) = 68 kg
speed of Anna (Va) = 17 m/s
mass of SandraDay (Ms) = 76 kg
speed of SandraDay (Vs) = 12 m/s
We can find their speed (V) immediately after collision from the conservation of momentum where
(Ma x Va) + (Ms + Vs) = (Ma + Ms) x V
where V = speed immediately after collision
(68 x 17) + (76 + 12) = (68 + 76) x V
2068 = 144 V
V = 2068 / 144 = 14.4 m/s
6.0 m longer because the player ran 3 and came back 3 at the very end, which looks like he went nowhere but in reality he ran 6.
Answer:
Explanation:
The energy stored in the spring is used to throw the ball upwards . Let the height reached be h
stored energy of spring = 1/2 k y² , k is spring constant and y is compression created in the spring
stored energy of spring = potential energy of the ball
1/2 k y² = mgh , m is mass of the ball , h is height attained by ball
.5 k x .055² = .025 x 2.84
.0015125 k = .071
k = .071 / .0015125
= 46.9 N / m .
Answer
Hi,
correct answer is {D} 3.5 m/s²
Explanation
Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.
Acceleration is calculated by the equation =change in velocity/change in time
a= {velocity final-velocity initial}/(change in time)
a=v-u/Δt
The units for acceleration is meters per second square m/s²
In this example, initial velocity =2.0m/s⇒u
Final velocity=44.0m/s⇒v
Time taken for change in velocity=12 s⇒Δt
a= (44-2)/12 = 42/12
3.5 m/s²
Best Wishes!
Answer:v=2 m/s
Explanation:
Given
Length of string L=1.2 m
mass of pendulum m=0.25 kg
maximum inclination with vertical \theta =34
vertical Rise of Pendulum from its mean position is given by

Conserving Energy at top and bottom point
Potential Energy of sphere is converted into kinetic energy of sphere




