As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m
Answer:
F = 0.535 N
Explanation:
Let's use the concepts of energy, at the highest and lowest point of the trajectory
Higher
Em₀ = U = mg y
Lower
= K = ½ m v²
Emo =
mg y = ½ m v2
v = √ 2gy
y = L - L cos θ
v = √ (2g L (1-cos θ))
Now let's use Newton's second law n at the lowest point where the acceleration is centripetal
F = ma
a = v² / r
In turning radius is the cable length r = L
F = m 2g (1-cos θ)
Let's calculate
F = 2 1.25 9.8 (1 - cos 12)
F = 0.535 N
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer:

Explanation:
<u>Second Newton's Law</u>
It allows to compute the acceleration of an object of mass m subject to a net force Fn. The relation is given by

The net force is the sum of all vector forces applied to the object. The block has two horizontal forces applied (in absence of friction): The 30 N force acting to the right and the 60 N force to the left. The positive horizontal direction is assumed to the right, so the net force is

Thus, the acceleration can be computed by


The negative sign indicates the block is accelerated to the left
Answer:
The frequency of the signal is 2 GHz
Explanation:
Given;
period of the clock signal, T = 500 ps = 500 x 10⁻¹² s
the frequency of the signal is given by;

F = 2 GHz
Therefore, the frequency of the signal is 2 x 10⁹ Hz or 2 GHz