Answer:

Explanation:
<u>Given Data:</u>
Momentum = P = 700 kg m/s
Velocity = v = 10 m/s
<u>Required:</u>
Mass = m = ?
<u>Formula:</u>
P = mv
<u>Solution:</u>
m = P / v
m = 700 / 10
m = 70 kg
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AnonymousHelper1807</h3>
To develop this problem it is necessary to apply the concepts related to Sound Intensity.
By definition the intensity is given by the equation

Where,
I = Intensity of Sound
= Intensity of Reference
At this case we have that 15 engines produces 15 times the reference intensity, that is

And the total mutual intensity is 100 dB, so we should




Therefore each one of these engines produce D. 88dB.
The average speed would have to be 260 km/hr due to the driver originally going 30 km/hr too slow the first two laps
Given that,
Distance in south-west direction = 250 km
Projected angle to east = 60°
East component = ?
since,
cos ∅ = base/hypotenuse
base= hyp * cos ∅
East component = 250 * cos 60°
East component = 125 km
Answer:
F = 39.2 N (hand force) and N = 68.6 N (shoulder force)
Explanation:
In this exercise we must use the rotational and translational equilibrium conditions, we have several forces: the weight (W) of the pole applied at its geometric center, the load (w1) at one end, the shoulder support (N) 60 cm from the load and hand force (F) at the other end of the pole
Let's set the reference system at the fit point of the shoulder
∑ τ = 0
We will assume that the counterclockwise turns are positive
w₁ 0.60 + W 0.1 + F₁ 0 - F 0.4 = 0
all distances are measured from the support of the man (x₀ = 0.60 m)
F = (w₁ 0.60 + W 0.1) / 0.4
F = (m₁ 0.6 + m 0.1) g / 0.4
let's calculate
F = (2.6 0.6 + 0.4 0.1) 9.8 / 0.4
F = 39.2 N
this is the force that the hand must exert to keep the system in balance
We apply the translational equilibrium condition
-w₁ -W + N - F = 0
N = w₁ + W + F
N = (m₁ + m) g + F
let's calculate
N = (2.6 + 0.4) 9.8 + 39.2
N = 68.6 N