Explanation:
yusef adds all of the values in his data set and then divide by the number of values in the set. the actual density of iron is 7.874 g/ml .
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
Answer:
Hello there use something that looks like this
Explanation:
This is an accurate representation of something you are working on!
As you can see the wire and the core are represented on the left and is showing how it can be represented on your right hand and how they are similar!
Answer:
a) Fₓ = 23.5 N
b) Net force = Fₓ
Explanation:
An image of the question as described is attached to this solution.
From the image attached, the forces acting on the box include the weight of the box, the normal reaction of the surface on the box, the applied force on the box and the Frictional force opposing the motion of the box (which is negligible and equal to 0)
a) From the diagram, the horizontal component of the force is
Fₓ = 25 cos 20° = 23.49 N = 25 N
b) Again, from the diagram attached, doing a force balance on the box, in the horizontal direction, we obtain
Net force = Fₓ - Frictional force
But frictional force is 0 N
Net force = Fₓ
Hope this Helps!!!
Please post in English so i or someone else can help you.