answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivan
2 years ago
6

A bicyclist travels the first 800 m of a trip 1.4 minutes, the next 500 m in 1.6 minutes, and finishes up the final 1200 m in 2

minutes. Find the average speed (in meters/min) of the bicyclist for this trip. 500 meters/min
Physics
1 answer:
soldier1979 [14.2K]2 years ago
7 0

Answer:

 v_average = 500 m / min

Explanation:

Average speed is defined

         v = (x_{f} -x₀) / Δt

let's look in each section

section 1

the variation of the distance is 800 in a time of 1.4 min

         v₁ = 800 / 1.4

         v₁ = 571.4 m / min

section 2

distance interval 500 in a 1.6 min time interval

         v₂ = 500 / 1.6

         v₂ = 312.5 m / min

section 3

distance interval 1200 m in a time 2 min

         v₃ = 1200/2

         v₃ = 600 m / min

taking the speed of each section we can calculate the average speed

         

the distance traveled

        Δx = 800 + 500 + 1200

        Δx = 2500 m

the time spent

        Δt = 1.4 + 1.6+ 2

        Δt = 5 min

         v_average = Δx / Δt

         v_average = 2500/5

         v_average = 500 m / min

You might be interested in
A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
tiny-mole [99]

Answer:

F=mg(sin(\theta )-0.25 cos(\theta ))

Explanation:

The free body diagram of the block on the slide is shown in the below figure

Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces

N is the reaction force between the block and the slide

For equilibrium along x-axis we have

\sum F_{x}=0\\\\mgsin(\theta )-\mu N-F=0\\\therefore F=mgsin(\theta)-\mu N......(\alpha )\\Similarly\\\sum F_{y}=0\\\\N-mgcos(\theta )=0\\\therefore N=mgcos(\theta ).......(\beta )\\\\

Using value of N from equation β in α we get value of force as

F=mg(sin(\theta )-\mu cos(\theta ))

Applying values we get

F=mg(sin(\theta )-0.25 cos(\theta ))

8 0
2 years ago
Read 2 more answers
Select True or False for the following statements about Heisenberg's Uncertainty Principle. True False It is not possible to mea
sveticcg [70]

Answer:

Statement 1) False

Statement 2) False

Statement 3) True

Explanation:

The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is

P\cdot\delta x\geq \frac{h}{4\pi }

Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.

Statement 1 is false since measurement of x and y positions has no relation to uncertainty.

Statement 2 is false as both the momentum components can be measured with 100% precision.

Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.

6 0
2 years ago
A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
GuDViN [60]

Answer:

E/4

Explanation:

The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:

E = σ/(2ε₀)

Where;

E is the electric field

σ is the surface charge density

ε₀ is the electric constant.

Formula to calculate σ is;

σ = Q/A

Where;

Q is the total charge of the sheet

A is the sheet's area.

We are told the elastic sheet is a square with a side length as d, thus ;

A = d²

So;

σ = Q/d²

Putting Q/d² for σ in the electric field equation to obtain;

E = Q/(2ε₀d²)

Now, we can see that E is inversely proportional to the square of d i.e.

E ∝ 1/d²

The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.

From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;

E_new = E/4

3 0
2 years ago
Where is the steering nozzle located on a pwc?
Dvinal [7]
At the rear.

PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
3 0
2 years ago
Read 2 more answers
A 250 Hz tuning fork is struck and the intensity at the source is I1 at a distance of one meter from the source. (a) What is the
Zina [86]

Answer:

a) 0.0625 I_1

b) 3.16 m

Explanation:

<u>Concepts and Principles  </u>

The intensity at a distance r from a point source that emits waves of power P is given as:  

I=P/4π*r^2                         (1)

<u>Given Data</u>

f (frequency of the tuning fork) = 250 Hz

I_1 is the intensity at the source a distance r_1 = I m from the source.  

<u>Required Data</u>

- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.

- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.  

<u>solution:</u>

(a)  

According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:

I∝1/r^2

Set the proportionality:  

I_1/I_2=(r_2/r_1)^2                                 (2)

Solve for I_2 :  

I_2=I_1(r_2/r_1)^2  

I_2=0.0625 I_1

(b)  

Solve Equation (2) for r_2:  

r_2=(√I_1/I_2)*r_1

where I_2 = (1/10)*I_1:

r_2=(√I_1/1/10*I_1)*r_1

     =3.16 m

3 0
2 years ago
Other questions:
  • A top of rotational inertia 4.0 kg m2 receives a torque of 2.4 nm from a physics professor. the angular acceleration of the body
    12·1 answer
  • If c1=c2=4.00μf and c4=8.00μf, what must the capacitance c3 be if the network is to store 2.70×10−3 j of electrical energy?
    11·1 answer
  • The speed of light of a ray of light traveling through a distance having an absolute index of refraction of 1.1 is?
    7·1 answer
  • The data table below shows the distribution of the energies of a pendulum 0.60 s into its motion. What is the missing value?
    7·1 answer
  • Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
    6·2 answers
  • A baggage handler at an airport applies a constant horizontal force with magnitude F1 to push a box, of mass m, across a rough h
    11·1 answer
  • When laser light shines on a screen after passing through two closely spaced slits, it becomes
    9·1 answer
  • You have two square metal plates with side lengths of (6.50 C) cm. You want to make a parallel-plate capacitor that will hold a
    10·1 answer
  • A green ball has a mass of 0.525 kg and a blue ball has a mass of 0.482 kg. A croquet player strikes the green ball and it gains
    11·1 answer
  • Question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!