answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
2 years ago
11

A toy car has a battery-powered fan attached to it such that the fan creates a constant force that is exerted on the car so that

it is propelled in the opposite direction in which the fan blows air. The car has a carriage that allows a student to attach objects of different masses, as shown above. The fan has only one speed setting. All frictional forces are considered to be negligible. Which of the following procedures could be used to determine how the mass of the fan-car-object system affects the acceleration of the system?
Physics
2 answers:
Andreas93 [3]2 years ago
7 0

Answer:

Measure the mass of the system using a balance, activate the fan, measure the distance traveled by the system at a known time by using a stopwatch, and repeat the experiment for several trials with different objects added to the carriage.

Explanation:

swat322 years ago
4 0

Procedures <em><u>point C</u></em> could be used to determine how the mass of the fan-car-object system affects the acceleration of the system

<h3>Further explanation </h3>

Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object

<h3>∑F = m. a </h3>

\large{\boxed{\bold{a=\frac{\sum F}{m}}}

F = force, N

m = mass = kg

a = acceleration due to gravity, m / s²

we complete the available answer choices

A).Measure the mass of the system using a balance, activate the fan, measure the distance traveled by the system at a known time by using a stopwatch, and repeat the experiment for several trials with different objects added to the carriage.

B) Measure the mass of the system using a balance, activate the fan, use a meterstick and stopwatch to measure the initial and final speeds of the system, and repeat the experiment for several trials with different objects added to the carriage.

C)Measure the mass of the system using a balance, connect a spring scale to the back of the car, measure the amount of force required to hold the system at rest, and repeat the experiment for several trials with different objects added to the carriage.

D)Measure the mass of the system using a balance, activate the fan, use a stopwatch to record the time it takes for the system to travel before the battery of the fan no longer works, and repeat the experiment for several trials with different objects added to the carriage.

From the choices above, we choose point C because to find out the effect of mass on acceleration, we need the force value (F) from the spring scale and the mass of objects of different masses using a balance

If we look at the formula, we can analyze and estimate that the greater the mass given, the smaller the system acceleration

<h3>Learn more</h3>

law of motion  

brainly.com/question/75210  

displacement of A skateboarder

brainly.com/question/1581159

The distance of the elevator  

brainly.com/question/8729508  

Keywords : system acceleration, A toy car, fan

#LearnWithBrainly

You might be interested in
You use a slingshot to launch a potato horizontally from the edge of a cliff with speed v0. The acceleration due to gravity is g
Ray Of Light [21]

Answer:

\displaystyle t=\frac{2v_o}{g}

Explanation:

<u>Horizontal Launch</u>

When an object is launched horizontally at a speed vo, it describes a curved called parabola as the speed in the x-direction does not change and the speed in the y-direction increases with time because the gravity makes it return to the ground.

The vertical distance the object (potato) travels downwards is:

\displaystyle y=\frac{gt^2}{2}

The horizontal distance is

x=v_ot

We need to find the time when both distances are equal, thus

\displaystyle \frac{gt^2}{2}=v_ot

Simplifying by t

\displaystyle \frac{gt}{2}=v_o

Solving for t

\displaystyle \boxed{t=\frac{2v_o}{g}}

8 0
2 years ago
If a rock is thrown upward on the planet mars with a velocity of 11 m/s, its height (in meters) after t seconds is given by h =
Butoxors [25]
(a) 3.56 m/s 
(b) 11 - 3.72a 
(c) t = 5.9 s 
(d) -11 m/s  
For most of these problems, you're being asked the velocity of the rock as a function of t, while you've been given the position as a function of t. So first calculate the first derivative of the position function using the power rule. 
y = 11t - 1.86t^2 
y' = 11 - 3.72t 
Now that you have the first derivative, it will give you the velocity as a function of t. 
(a) Velocity after 2 seconds. 
y' = 11 - 3.72t 
y' = 11 - 3.72*2 = 11 - 7.44 = 3.56 
So the velocity is 3.56 m/s  
(b) Velocity after a seconds. 
y' = 11 - 3.72t 
y' = 11 - 3.72a  
So the answer is 11 - 3.72a  
(c) Use the quadratic formula to find the zeros for the position function y = 11t-1.86t^2. Roots are t = 0 and t = 5.913978495. The t = 0 is for the moment the rock was thrown, so the answer is t = 5.9 seconds.  
(d) Plug in the value of t calculated for (c) into the velocity function, so: 
y' = 11 - 3.72a
 y' = 11 - 3.72*5.913978495
 y' = 11 - 22
 y' = -11 
 So the velocity is -11 m/s which makes sense since the total energy of the rock will remain constant, so it's coming down at the same speed as it was going up.
3 0
2 years ago
You stand on a bathroom scale in a moving elevator. what happens to the scale reading if the cable holding the elevator suddenly
Viefleur [7K]

A bathroom scales works due to gravity. Under normal conditions, a reading can be obtained when your body is pushing some force on the scale. However in this case, since you and the scale are both moving downwards, so your body is no longer pushing on the scale. Therefore the answer is:

<span>The reading will drop to 0 instantly</span>

7 0
2 years ago
Read 2 more answers
A coat rack weighs 65.0 lbs when it is filled with winter coats and 40.0 lbs when it is empty. The base of the coat rack has an
Whitepunk [10]

Answer:

0.056 psi more pressure is exerted by filled coat rack than an empty coat rack.

Explanation:

First we find the pressure exerted by the rack without coat. So, for that purpose, we use formula:

P₁ = F/A

where,

P₁ = Pressure exerted by empty rack = ?

F = Force exerted by empty rack = Weight of Empty Rack = 40 lb

A = Base Area = 452.4 in²

Therefore,

P₁ = 40 lb/452.4 in²

P₁ = 0.088 psi

Now, we calculate the pressure exerted by the rack along with the coat.

P₂ = F/A

where,

P₂ = Pressure exerted by rack filled with coats= ?

F = Force exerted by filled rack = Weight of Filled Rack = 65 lb

A = Base Area = 452.4 in²

Therefore,

P₂ = 65 lb/452.4 in²

P₂ = 0.144 psi

Now, the difference between both pressures is:

ΔP = P₂ - P₁

ΔP = 0.144 psi - 0.088 psi

<u>ΔP = 0.056 psi</u>

8 0
2 years ago
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
Shalnov [3]

Answer:

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

Explanation:

A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.

A) What is the wavefunction y(x,t) for the standing wave that is produced?

B) In which harmonic is the standing wave oscillating?

C) What is the frequency of the fundamental oscillation?

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. lambda=2L/n

when comparing the wave equation with the general wave equation , we get the wavelength to be

2*pi*x/lambda=6.98x

lambda=0.9m

we use the equation

lambda=2L/n

n=number of harmonics

L=length of string

0.9=2(1.35)/n

n=2.7/0.9

n=3

third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

8 0
2 years ago
Other questions:
  • A space station consists of two donut-shaped living chambers, A and B, that have the radii shown in the drawing. As the station
    12·1 answer
  • The most widely accepted model for the origin of the moon involves _____. the formation of the moon from dust and gas when earth
    13·2 answers
  • Water in the lake behind hoover dam is 221 m deep. part a what is the gauge water pressure at the base of the dam?
    6·2 answers
  • A satellite completes one revolution of a planet in almost exactly one hour. At the end of one hour, the satellite has traveled
    5·1 answer
  • Describe the energy transformations that take place when a skier starts skiing down a hill but after a time is brought to rest b
    6·1 answer
  • Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in
    12·2 answers
  • Describing the motion of an object can be difficult to do and using graphs help make motion easier to understand. Motion is a ch
    15·2 answers
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
    8·2 answers
  • (a) Triply charged uranium-235 and uranium-238 ions are being separated in a mass spectrometer. (The much rarer uranium-235 is u
    6·1 answer
  • One of the great dangers to mountain climbers is an avalanche, in which a large mass of snow and ice breaks loose and goes on an
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!