A comet is long and also bright, which has a blue-ish color to it.
Best Regards, Mike
Answer:
Average density of Sun is 1.3927
.
Given:
Radius of Sun = 7.001 ×
km = 7.001 ×
cm
Mass of Sun = 2 ×
kg = 2 ×
g
To find:
Average density of Sun = ?
Formula used:
Density of Sun = 
Solution:
Density of Sun is given by,
Density of Sun = 
Volume of Sun = 
Volume of Sun = ![\frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Ctimes%203.14%20%5Ctimes%20%5B7.001%20%5Ctimes%2010%5E%7B10%7D%5D%5E%7B3%7D)
Volume of Sun = 1.436 ×

Density of Sun = 
Density of Sun = 1.3927 
Thus, Average density of Sun is 1.3927
.
Impulse equals Change in Momentum
F = average applied force = to be determined
Δt = time during which the force is applied = 0.50 s
m = mass = 1,700 kg
Δp = change in momentum = to be determined
Δv = change in velocity = to be determined
v1 = initial velocity = 50.0 km/h = 50,000 m/h = 13.9 m/s
v2 = final velocity = 0.00 km/h = 0.00 m/s
F∙Δt = Δp
F∙Δt = m∙Δv
F∙Δt = m∙(v2 - v1)
F = m∙(v2 - v1) / Δt
F = 1,700 kg∙(0.00 m/s - 13.9 m/s) / 0.50 s
<span>F = -47,222 N The negative sign means that the force vector is </span>
<span>applied AGAINST the momentum vector of the rhinoceros.</span>
Answer:
choosing a material that will show warning before it fails
Explanation:
According to my research on different architectural engineering techniques, I can say that based on the information provided within the question this is an example of choosing a material that will show warning before it fails. By choosing aluminum he can detect certain failures a long time before it actually happens since aluminum shows signs of wear and tear and doesn't just break immediately.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.