Explanation:
It is given that,
Mass of Millersburg Ferry, m = 13000 kg
Velocity, v = 11 m/s
Applied force, F = 10⁶ N
Time period, t = 20 seconds
(a) Impulse is given by the product of force and time taken i.e.



(b) Impulse is also given by the change in momentum i.e.





(c) For new velocity,



Hence, this is the required solution.
Answer:
0.056 psi more pressure is exerted by filled coat rack than an empty coat rack.
Explanation:
First we find the pressure exerted by the rack without coat. So, for that purpose, we use formula:
P₁ = F/A
where,
P₁ = Pressure exerted by empty rack = ?
F = Force exerted by empty rack = Weight of Empty Rack = 40 lb
A = Base Area = 452.4 in²
Therefore,
P₁ = 40 lb/452.4 in²
P₁ = 0.088 psi
Now, we calculate the pressure exerted by the rack along with the coat.
P₂ = F/A
where,
P₂ = Pressure exerted by rack filled with coats= ?
F = Force exerted by filled rack = Weight of Filled Rack = 65 lb
A = Base Area = 452.4 in²
Therefore,
P₂ = 65 lb/452.4 in²
P₂ = 0.144 psi
Now, the difference between both pressures is:
ΔP = P₂ - P₁
ΔP = 0.144 psi - 0.088 psi
<u>ΔP = 0.056 psi</u>
Answer:
the molecules have different energy and the system is not in equilibrium
Explanation:
The model developed by Jack has the same energy for each of the two objects, but as each object is made up of a different number of molecules, in the system with more molecules, object 2, each one has approximately 2.4 less energy and the molecules of Object 1 have an E / 2 energy.
So when you book them together the molecules have different energy and the system is not in equilibrium
Answer:
w_f = m*V*cos(Q_n) / L*(m+M)
Explanation:
Given:
- mass of the putty ball m
- mass of the rod M
- Velocity of the ball V
- Length of the rod L
- Angle the ball makes before colliding with rod Q_n
Find:
What is the angular speed ωf of the system immediately after the collision,
Solution:
- We can either use conservation of angular momentum or conservation of Energy. We will use Conservation of angular momentum of a system:
L_before = L_after
- Initially the rod is at rest, and ball is moving with the velocity V at angle Q from normal to the rod. We know that the component normal to the rod causes angular momentum. Hence,
L_before = L_ball = m*L*V*cos(Q_n)
- After colliding the ball sicks to the rod and both move together with angular speed w_f
L_after = (m+M)*L*v_f
Where, v_f = L*w_f
L_after = (m+M)*L^2 * w_f
- Now equate the two expression as per conservation of angular momentum:
m*L*V*cos(Q_n) = (m+M)*L^2 * w_f
w_f = m*V*cos(Q_n) / L*(m+M)
Answer:
ρ = 830.32 kg/m³
Explanation:
Given that
Oil head = 12.2 m
h= 12.2 m
Pressure P = 1.013 x 10⁵ Pa
Lets take density of the liquid =ρ
The pressure due to liquid P given as
P = ρ g h
Now by putting the all values in the above equation
1.013 x 10⁵ Pa = ρ x 10 x 12.2 ( take g =10 m/s²)
ρ = 830.32 kg/m³
Therefore the density of oil is 830.32 kg/m³