answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
12

A baseball catcher puts on an exhibition by catching a 0.15-kg ball dropped from a helicopter at a height of 101 m. What is the

speed of the ball just before it hits the catcher’s glove 1.0 m above the ground? (g = 9.8 m/s2 and ignore air resistance)
(A) 44 m/s
(B) 38 m/s
(C) 31 m/s
(D) 22 m/s
Physics
1 answer:
yaroslaw [1]2 years ago
3 0

Answer:

The speed of the ball 1.0 m above the ground is 44 m/s (Answer A).

Explanation:

Hi there!

To solve this problem, let´s use the law of conservation of energy. Since there is no air resistance, the only energies that we should consider is the gravitational potential energy and the kinetic energy. Because of the conservation of energy, the loss of potential energy of the ball must be compensated by a gain in kinetic energy.

In this case, the potential energy is being converted into kinetic energy as the ball falls (this is only true when there are no dissipative forces, like air resistance, acting on the ball). Then, the loss of potential energy (PE) is equal to the increase in kinetic energy (KE):

We can express this mathematically as follows:

-ΔPE = ΔKE

-(final PE - initial PE) = final KE - initial KE

The equation of potential energy is the following:

PE = m · g · h

Where:

PE = potential energy.

m = mass of the ball.

g = acceleration due to gravity.

h = height.

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

KE = kinetic energy.

m = mass of the ball.

v = velocity.

Then:

-(final PE - initial PE) = final KE - initial KE          

-(m · g · hf - m · g · hi) = 1/2 · m · v² - 0     (initial KE = 0 because the ball starts from rest)  (hf = final height, hi = initial height)

- m · g (hf - hi) = 1/2 · m · v²

2g (hi - hf) = v²

√(2g (hi - hf)) = v

Replacing with the given data:

√(2 · 9.8 m/s²(101 m - 1.0 m)) = v

v = 44 m/s

The speed of the ball 1.0 m above the ground is 44 m/s.

You might be interested in
A friend throws a heavy ball toward you while you are standing on smooth ice. You can either catch the ball or deflect it back t
baherus [9]

Answer:

Explanation:

My speed after the interaction will depend upon the impulse the ball will make on me . Now impulse can be expressed as follows

Impulse = change in momentum

change in momentum in the ball will be maximum when the ball bounces back with the same velocity which can be shown as follows

change in momentum = mv - ( - mv ) = 2mv

So when ball is bounced back with same velocity , it suffers greatest impulse from my hand . In return ,  it reacts with the same impulse on my hand pushing me with greatest impulse according to third law of motion. this maximizes my speed after the interaction.

6 0
2 years ago
A group of students must conduct an experiment to determine how the location of an applied force on a classroom door affects the
schepotkina [342]

Answer:

the answer the correct one is the  d

Explanation:

In the gate rotation experiment several things are measured.

- the distance from the hinges to the applied force, which must be measured with a tape measure

- The value of the force that is devised with a dynamometer

- the rotated angle that is measured with a protractor

- the time it takes to turn an angle, which is measured with a stopwatch

When examining the answer the correct one is the  d

8 0
2 years ago
A moving sidewalk 95 m in length carries passengers at a speed of 0.53 m/s. One passenger has a normal walking speed of 1.24 m/s
Archy [21]

Answer:

a) t = 1.8 x 10² s

b) t = 54 s

c) t = 49 s

Explanation:

a) The equation for the position of an object moving in a straight line at constan speed is:

x = x0 + v * t

where

x = position at time t

x0 = initial position

v = velocity

t = time

In this case, the origin of our reference system is at the begining of the sidewalk.

a) To calculate the time the passenger travels on the sidewalk without wlaking, we can use the equation for the position, using as speed the speed of the sidewalk:

x = x0 + v * t

95 m = 0m + 0. 53 m/s * t

t = 95 m/ 0.53 m/s

t = 1.8 x 10² s

b) Now, the speed of the passenger will be her walking speed plus the speed of th sidewalk (0.53 m/s + 1.24 m/s = 1.77 m/s)

t = 95 m/ 1.77 m/s = 54 s

c) In this case, the passenger is located 95 m from the begining of the sidewalk, then, x0 = 95 m and the final position will be x = 0. She walks in an opposite direction to the movement of the sidewalk, towards the origin of the system of reference ( the begining of the sidewalk). Then, her speed will be negative ( v = 0.53 m/s - 2*(1.24 m/s) = -1.95 m/s. Then:

0 m = 95 m -1.95 m/s * t

t = -95 m / -1.95 m/s = 49 s

3 0
2 years ago
A steel rod with a length of l = 1.55 m and a cross section of A = 4.45 cm2 is held fixed at the end points of the rod. What is
Blababa [14]

To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

F = AY\alpha \Delta T

Where

A = Cross-sectional Area

Y = Young's modulus

\alpha= Coefficient of linear expansion for steel

\Delta T= Temperature Raise

Our values are given as,

A = 4.45cm^2

T = 37K

\alpha = 1.17*10^{-5}K^{-1}

Y = 200*10^9Gpa

Replacing we have,

F = (4.45*10^{-4})(200*10^9)(1.17*10^{-5})(37)

F = 38526.1N

Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N

7 0
2 years ago
Gravity is the force that keeps us on the Earth. It pulls us towards the center of the Earth. If you were to move from the surfa
Nikitich [7]
<h2>Answer: B. Gravitational potential energy </h2>

Explanation:

<em>The gravitational potential energy is the energy that a body or object possesses, due to its position in a gravitational field. </em>

That is why this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.

In the case of the <u>Earth</u>, in which  <u>the gravitational field is considered constant</u>, the value of the gravitational potential energy U_{p} will be:

U_{p}=mgh  

Where m is the mass of the object, g the acceleration due gravity and h the height of the object.

As we can see, the value of U_{p} is directly proportional to the height.

6 0
2 years ago
Other questions:
  • Two balls, each with a mass of 0.5 kg, collide on a pool table. Is the law of conservation of momentum satisfied in this collisi
    6·2 answers
  • A satellite completes one revolution of a planet in almost exactly one hour. At the end of one hour, the satellite has traveled
    5·1 answer
  • Jane is a team leader. Match her leadership and teamwork skills to the appropriate descriptions.making her team understand the r
    6·1 answer
  • The drag force, fd, imposed by the surrounding air on a vehicle moving with velocity v is given by fd = cdaρv 2/2 where cd is a
    7·1 answer
  • Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
    12·1 answer
  • When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
    7·1 answer
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • One kind of slingshot consists of a pocket that holds a pebble and is whirled on a circle of radius r. The pebble is released fr
    14·1 answer
  • Energy is observed in two basic forms: potential and kinetic. Which of the following correctly matches these forms with a source
    7·1 answer
  • 4 A wheel starts from rest and has an angular acceleration of 4.0 rad/s2. When it has made 10 rev determine its angular velocity
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!