answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
2 years ago
12

A baseball catcher puts on an exhibition by catching a 0.15-kg ball dropped from a helicopter at a height of 101 m. What is the

speed of the ball just before it hits the catcher’s glove 1.0 m above the ground? (g = 9.8 m/s2 and ignore air resistance)
(A) 44 m/s
(B) 38 m/s
(C) 31 m/s
(D) 22 m/s
Physics
1 answer:
yaroslaw [1]2 years ago
3 0

Answer:

The speed of the ball 1.0 m above the ground is 44 m/s (Answer A).

Explanation:

Hi there!

To solve this problem, let´s use the law of conservation of energy. Since there is no air resistance, the only energies that we should consider is the gravitational potential energy and the kinetic energy. Because of the conservation of energy, the loss of potential energy of the ball must be compensated by a gain in kinetic energy.

In this case, the potential energy is being converted into kinetic energy as the ball falls (this is only true when there are no dissipative forces, like air resistance, acting on the ball). Then, the loss of potential energy (PE) is equal to the increase in kinetic energy (KE):

We can express this mathematically as follows:

-ΔPE = ΔKE

-(final PE - initial PE) = final KE - initial KE

The equation of potential energy is the following:

PE = m · g · h

Where:

PE = potential energy.

m = mass of the ball.

g = acceleration due to gravity.

h = height.

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

KE = kinetic energy.

m = mass of the ball.

v = velocity.

Then:

-(final PE - initial PE) = final KE - initial KE          

-(m · g · hf - m · g · hi) = 1/2 · m · v² - 0     (initial KE = 0 because the ball starts from rest)  (hf = final height, hi = initial height)

- m · g (hf - hi) = 1/2 · m · v²

2g (hi - hf) = v²

√(2g (hi - hf)) = v

Replacing with the given data:

√(2 · 9.8 m/s²(101 m - 1.0 m)) = v

v = 44 m/s

The speed of the ball 1.0 m above the ground is 44 m/s.

You might be interested in
A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
kobusy [5.1K]

Answer:

24,267.6 watts

Explanation:

from the question we are given the following:

mass (m) = 810 kg

final velocity (v) = 7 m/s

initial velocity (u) = 0 m/s

time (t) = 3.5 s

final height (h₁) = 8.2 m

initial height (h₀) = 0 m

acceleration due to gravity (g) = 9.8 m/s^{2}

find the power

power = \frac{work done}[time}

and

work done = change in kinetic energy (K.E) + change in potential energy (P.E)

work done = (0.5 mv^{2} - 0.5 mu^{2} ) + ( mgh₁ - mgh₀)

since u and h₀ are zero the work done now becomes

work done = (0.5 mv^{2}) + ( mgh₁ )                    

work done = (0.5 x 810 x 7^{2}) + ( 810 x 9.8 x 8.2)

work done = 84, 936.6 joules

recall that power = \frac{work done}[time}

power = \frac{84,936.6}[3.5}

power = 24,267.6 watts

7 0
1 year ago
An object is dropped from rest into a pit, and accelerates due to gravity at roughly 10 m/s2. It hits the ground in 5 seconds. A
vitfil [10]

Answer:

Second pit is 375 m deeper compared to first pit.

Explanation:

We have equation of motion s = ut + 0.5at²

First object hits the ground after 5 seconds,

          Initial velocity, u = 0 m/s

         Acceleration, a = 10 m/s²

         Time, t = 5 s

    Substituting,

                  s = ut + 0.5 at²

                 s = 0 x 5 + 0.5 x 10 x 5²

                    s = 125 m

           Depth of pit 1 = 125 m

Second object hits the ground after 10 seconds,

          Initial velocity, u = 0 m/s

         Acceleration, a = 10 m/s²

         Time, t = 10 s

    Substituting,

                  s = ut + 0.5 at²

                 s = 0 x 10 + 0.5 x 10 x 10²

                    s = 500 m

           Depth of pit 2 = 500 m

Difference in depths = 500 - 125 = 375 m

Second pit is 375 m deeper compared to first pit.

7 0
1 year ago
A 10N force pulls to the right and friction opposes 2N. If the object is 20kg,find the acceleraton.
zmey [24]

Force = mass * acceleration

10 N - 2 N = 20 kg * acceleration

8 N = 20 kg * acceleration

8 / 20 = acceleration

2/5 m/s^2 = acceleration

8 0
1 year ago
Read 2 more answers
Paintball guns were originally developed to mark trees for logging. A forester aims his gun directly at a knothole in a tree tha
emmasim [6.3K]

Answer:

The distance between knothole and the paint ball is 0.483 m.

Explanation:

Given that,

Height = 4.0 m

Distance = 15 m

Speed = 50 m/s

The angle at which the forester aims his gun are,

\tan\theta=\dfrac{4}{15}

\tan\theta=0.266

\cos\theta=\dfrac{15}{\sqrt{15^2+4^2}}

\cos\theta=0.966

Using the equation of motion of the trajectory

The horizontal displacement of the paint ball is

x=(u\cos\theta)t

t=\dfrac{x}{u\cos\theta}

Using the equation of motion of the trajectory

The vertical displacement of the paint ball is

y=u\sin\theta(t)-\dfrac{1}{2}gt^2

y=u\sin\theta(\dfrac{x}{u\cos\theta})-\dfrac{1}{2}g(\dfrac{x}{u\cos\theta})^2

y=x\tan\theta-\dfrac{gx^3}{2u^2(\cos\theta)^2}

Put the value into the formula

y=(15\times0.266)-(\dfrac{9.8\times(15)^2}{2\times(50)^2\times(0.966)^2})

y=3.517\ m

We need to calculate the distance between knothole and the paint ball

d=h-y

d=4-3.517

d=0.483\ m

Hence, The distance between knothole and the paint ball is 0.483 m.

8 0
2 years ago
A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
tensa zangetsu [6.8K]

Answer:

The number of turns is  N  = 1750 \ turns

Explanation:

From the question we are told that

  The inner radius is r_i =  12.0 \  cm  =  0.12 \  m

   The outer radius is  r_o =  15.0 \  cm  =  0.15 \  m

   The current it carries is I =  1.50 \  A

    The magnetic field is  B  =   3.75 mT = 3.75 *10^{-3} \  T

   The distance from the center is d =  14.0 \ cm  =  0.14 \  m

Generally the number of turns is mathematically represented as

    N  =  \frac{2 *  \pi  * d  *  B}{ \mu_o *  r_o }

Generally  \mu_o is the permeability of free space with value  

    \mu_o  =  4\pi * 10^{-7} \ N/A^2

So

  N  =  \frac{2 *  3.142   * 0.14 *  3.75 *10^{-3} }{ 4\pi * 10^{-7}  * 0.15  }

  N  = 1750 \ turns

5 0
1 year ago
Other questions:
  • What is the weight of an object (mass = 60 kilograms) on Mars, where the acceleration due to gravity is 3.75 meters/second2?. Se
    15·1 answer
  • A person on a cruise ship is doing laps on the promenade deck. on one portion of the track the person is moving north with a spe
    10·2 answers
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • A driver uses his/her _____ vision to detect the motion from the sides
    9·1 answer
  • Experimental tests have shown that hammerhead sharks can detect magnetic fields. In one such test, 100 turns of wire were wrappe
    10·1 answer
  • A uniform metal bar is 5.00 m long and has mass 0.300 kg. The bar is pivoted on a narrow support that is 2.00 m from the left-ha
    8·1 answer
  • The velocity of a an object in linear motion changes from +25 meters per second to +15 meters per second in 2.0 seconds.
    9·1 answer
  • Trained dolphins are capable of a vertical leap of 7.0m straight up from the surface of the water-an impressive feat.Suppose you
    15·1 answer
  • At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is inc
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!