In the circular motion of the hammer, the centripetal force is given by

where m is the mass of the hammer, v its tangential speed and r is the distance from the center of the motion, i.e. the length of the hammer.
Using the data of the problem, we find:
I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
Given
m1(mass of red bumper): 225 Kg
m2 (mass of blue bumper): 180 Kg
m3(mass of green bumper):150 Kg
v1 (velocity of red bumper): 3.0 m/s
v2 (final velocity of the combined bumpers): ?
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2
=555v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
1215 = 555 v2
v2 = 2.188 m/s
Hence the velocity of the combined bumper cars is 2.188 m/s
The kinetic energy of any moving object is
(1/2) (mass) (speed²) .
For the object you described, that's
(1/2) (100 kg) (12.5 m/s)²
= (50 kg) (156.25 m²/s²)
= 7,812.5 joules
______________________________
Your attachment is way out of focus, and impossible to read.