answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
2 years ago
15

A boy pushes a rock up a hill in 20 seconds. If he applied a force of 20 N over a distance of 5 m on the rock, calculate the pow

er required in this situation.
80 watts
0.2 watts
2,000 watts
5 watts
Physics
1 answer:
aksik [14]2 years ago
4 0

Here is your answer

5 watts

REASON :

Given,

t= 20 secs

F= 20 N

s (displacement)= 5m

Now,

Power= \frac{Work done}{time}

P= W/t ...... (i)

W= F×s×cos(theta)

W= 20×5 × 1 (theta is 0 degree; so cos0= 1)

W= 100 J

Hence,

P= 100/20 (from eq. i)

P= 5 watts

HOPE IT IS USEFUL

You might be interested in
Calculate the density of mercury if 500 cm3
notka56 [123]

Answer:

The density of the mercury is 13.2 g/cm³

Explanation:

Density is a measurement that compares the amount of matter an object

has to its volume

Density is equal to mass divided by volume

We need to find the density of mercury if 500 cm³ has a mass of

6.60 kg in g/cm

We must to change The kilogram to grams

The mass of mercury is 6.60 kilograms

1 kilogram = 1000 grams

6.60 kilograms = 6.60 × 1000 = 6600 grams

Density = mass ÷ volume

The volume of the mercury is 500 cm³

The density = 6600 ÷ 500

The density = 13.2 g/cm³

<em>The density of the mercury is 13.2 g/cm³ </em>

5 0
2 years ago
What do slinky waves and seismic waves have in common? A. They both always occur as transverse waves. B. They both always occur
Usimov [2.4K]

the answer is E both are mechanical waves

3 0
2 years ago
Read 2 more answers
Denise is conducting a physics experiment to measure the acceleration of a falling object when it slows down and comes to a stop
iren [92.7K]
We need a and we have m and F . Now a = f÷m so therefore a = 4,9 ÷ 0,5 which is 0,98 metres per cubic second
4 0
2 years ago
Read 2 more answers
Calculate the mag-netic field (magnitude and direc-tion) at a point p due to a current i=12.0 a in the wire shown in fig. p28.68
creativ13 [48]

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The magnitude is   B= 4.2 *10^ {-6}T , the direction is into the page

Explanation:

From the question we are told that

        The current  is i = 12.0 A

        The radius of arc  bc is r_{bc} = 30.0 \ cm =\frac{30}{100} = 0.3m

        The radius  of arc da is r_{da} = 20.0 \ cm = \frac{20}{100} = 0.20 \ m

        The length of segment cd and ab is = l = 10cm = \frac{10}{100} = 0.10 m

The objective of the solution is to obtain the magnetic field

    Generally magnetic due to the current flowing in the arc is mathematically represented as

             B = \frac{\mu_o I}{4 \pi r}

 Here I is the current

         \mu_o is the permeability of free space with a value of 4\pi *10^{-7}T \cdot m/A

            r is the distance

Considering Arc da

         B_{da} = \frac{\mu_o I}{4 \pi r_{da}} \theta

Where \theta is the angle the arc da makes with the center  from the diagram its value is  \theta = 120^o = 120^o * \frac{\pi}{180} = \frac{2\pi}{3} rad

     Now substituting values into formula for magnetic field for da

                    B_{da} = \frac{4\p *10^{-7} * 12}{4 \pi (0.20)}[\frac{2 \pi}{3} ]

                           = \frac{10^{-7} * 12}{0.20} * [\frac{2 \pi}{3} ]

                   B_{da}= 12.56*10^{-6} T

Looking at the diagram to obtain the direction of the current and using right hand rule then we would obtain the the direction of magnetic field due to da is into the pages of the paper

Considering Arc bc

             B_{bc} = \frac{\mu_o I}{4 \pi r_{bc}} \theta

Substituting value

          B_{bc} = \frac{4 \pi *10^{-7} * 12}{4 \pi (0.30)} [\frac{2 \pi}{3} ]

                B_{bc}= 8.37*10^{-6}T

Looking at the diagram to obtain the direction of the current and using right hand rule then we would obtain the the direction of magnetic field due to bc is out of  the pages of the paper

Since the line joining P to segment bc and da makes angle = 0°

     Then the net magnetic field would be

                 B = B_{da} - B{bc}

                     = 12.56*10^{-6} - 8.37*10^{-6}

                     = 4.2 *10^ {-6}T

       Since B_{da} > B_{bc} then the direction of the net charge would be into the page

 

3 0
2 years ago
What is the initial velocity of the object represented by the graph? ___m/s Graph:
Alex17521 [72]

Answer:

On a velocity-time graph… slope is acceleration. the "y" intercept is the initial velocity. when two curves coincide, the two objects have the same velocity at that time.

4 0
2 years ago
Read 2 more answers
Other questions:
  • What is the kinetic energy of a 2000 kilogram boat moving at 5m/sec?
    12·1 answer
  • A box with a mass of 100.0 kg slides down a ramp with a 50 degree angle. What is the weight of the box? N What is the value of t
    12·1 answer
  • In a supermarket, you place a 22.3-N (around 5 lb) bag of oranges on a scale, and the scale starts to oscillate at 2.7 Hz. What
    14·1 answer
  • During metamorphism, what is the major effect of chemically active fluids?
    7·1 answer
  • A solid steel cylinder is standing (on one of its ends) vertically on the floor. The length of the cylinder is 3.2 m and its rad
    13·1 answer
  • The spring is now compressed so that the unconstrained end moves from x=0 to x=L. Using the work integral W=∫xfxiF⃗ (x⃗ )⋅dx⃗ ,
    6·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • A metal sphere of radius 2.0 cm carries an excess charge of 3.0 μC. What is the electric field 6.0 cm from the center of the sph
    9·1 answer
  • As a person pushes a box across a floor, the energy from the person’s moving arm is transferred to the box, and the box and the
    13·2 answers
  • A spring stretches by 15cm when a mass of 300g hangs down from it,if the spring is then stretched an additional 10cm and release
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!