answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlladinOne [14]
2 years ago
12

What is the initial velocity of the object represented by the graph? ___m/s Graph:

Physics
2 answers:
kondaur [170]2 years ago
8 0

Answer:

5 is da answer

Explanation:

Alex17521 [72]2 years ago
4 0

Answer:

On a velocity-time graph… slope is acceleration. the "y" intercept is the initial velocity. when two curves coincide, the two objects have the same velocity at that time.

You might be interested in
The rotational kinetic energy term is often called the kinetic energy in the center of mass, while the translational kinetic ene
weqwewe [10]

Answer:

C

Explanation:

The total kinetic energy is the sum of the kinetic energy in the center of mass (Rotational Kinetic energy) plus the kinetic energy of the center of mass( Translational Kinetic Energy).

The formula

K_{tot} = K_{t} +K_{r}  is applicable only when

The moment of inertia must be taken about an axis through the center of mass.

6 0
2 years ago
Read 2 more answers
A quarterback throws a football down the field to the receiver. What type(s) of energy does the football possess? Check all that
zloy xaker [14]

Answer: kinetic , potential, mechanical

Explanation:

6 0
2 years ago
Read 2 more answers
A truck initially traveling at a speed of 22 meters per second increases speed at a constant rate of 2.4 meters per second^2 for
Usimov [2.4K]
Thank you for posting your question here. The total distance traveled by the truck during the 3.2 seconds interval is 83 m. Below is the solution:

d = vit + 1/2 at^2
d = (22m/ s) (3.2s) + 1/2 (2.4m/ s^2) (3.2s)^2
d = 83 m 
Hope the answer helps. 
8 0
2 years ago
A solid cylindrical bar conducts heat at a rate of 25 W from a hot to a cold reservoir under steady state conditions. If both th
expeople1 [14]

Answer:

Using the new cylinder the heat rate between the reservoirs would be 50 W

Explanation:

  1. Conduction could be described by the Law of Fourierin the form: Q=kA\frac{T_1-T_2}{L} where Q is the rate of heat transferred  by conduction, k is the thermal conductivity of the material, T_1 and T_2 are the temperatures of each heat deposit, A is the cross area to the flow of heat, and {L} is the distance that the flow of heat has to go.
  2. For the original cylinder the Fourier's law would be: kA_1\frac{T_1-T_2}{L_1}=25W, and if A_1=\frac{\pi D_{1}^{2}}{4}, then the expression would be:k\frac{\pi D_1^{2}}{4} \frac{T_1-T_2}{L_1}=25W where D_1 is the diameter of the original cylinder, and {L_1} is the length of the original cylinder.
  3. For the new cylinder, in the same fashion that for the first, Fourier's Law would be: Q_2=k\frac{\pi D_2^2}{4}\frac{T_1-T_2}{L_2},where Q_2 is the heat rate in the second case, D_2 and {L_2 are the new diameter and length.
  4. But, D_2=2D_1 and L_2=2L_1, substituting in the expression for Q_2: Q_2=k\frac{\pi (2D_1)^2}{4}\frac{T_1-T_2}{2L_1}.
  5. Rearranging: Q_2=\frac{2^2}{2}(k\frac{\pi D_1^2}{4}\frac{T_1-T_2}{L_1}).
  6. In the last declaration of  Q_2, it could be noted that the expressión inside the parenthesis is actually  Q_1, then:  Q_2=\frac{2^2}{2}(25W)=50W.
  7. <u>It should be noted, that the temperatures in the hot and cold reservoirs never change.</u>
7 0
2 years ago
A magnetic field of 0.080 T is in the y-direction. The velocity of wire segment S has a magnitude of 78 m/s and components of 18
Annette [7]

Answer:

Part a)

Induced EMF when length vector is along Z direction is 0.72 V

Part b)

Induced EMF when length vector is along Y direction is ZERO

Explanation:

As we know that the motional EMF induced in the wire is given as

E = (v\times B). L

1)

As we know that

v = 18\hat i + 24\hat j + 72\hat k

B = 0.080 \hat j

L = 0.50 \hat k

now we have

\vec v \times \vec B = 1.44\hat k - 5.76 \hat i

so we have

E = 1.44 (0.50) = 0.72 V

2)

If the length vector is along Y direction then we have

L = 0.50 \hat j

so again we have

\vec v \times \vec B = 1.44\hat k - 5.76 \hat i

so we have

EMF = 0

6 0
2 years ago
Other questions:
  • Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous plan
    14·1 answer
  • The curved section of a horizontal highway is a circular unbanked arc of radius 740m. If the coefficient of static friction betw
    15·2 answers
  • A solid plate, with a thickness of 15 cm and a thermal conductivity of 80 W/m·K, is being cooled at the upper surface by air. Th
    5·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • The brake pads for a bicycle tire are made of rubber. If a frictional force of 50 N is applied to each side of the tires, determ
    14·1 answer
  • A battery with internal resistance r is connected to a load resistance R. If R is increased, does the terminal voltage of the ba
    14·1 answer
  • I need help plz help me out 10 points!!!!!!!
    6·2 answers
  • Una furgoneta circula por una carretera a 55km/h. Diez km atrás , un coche circula en el mismo sentido a 85km/h ¿ En cuanto tiem
    10·1 answer
  • Where is there kinetic energy in this system?
    15·1 answer
  • A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!