Answer:
The volume at mountains is 2.766 L.
Explanation:
Given that,
Volume 
Pressure 
Pressure 
Temperature 
Temperature 
We need to calculate the volume at mountains
Using gas law

For both temperature,

Put the value into the formula



Hence, The volume at mountains is 2.766 L.
Answer:
The force applied on the big piston is 1306.67 N
Explanation:
Given;
force applied on small piston, F₁ = 200 N
diameter of the small piston, d₁ = 4.37 cm
radius of the small piston, r₁ = d₁/2 = 2.185 cm
Area of the small piston, A₁ = πr₁² = π(2.185 cm)² = 15 cm²
Area of the big piston, A₂ = 98 cm²
The pressure of the piston is given by;

Where;
F₂ is the force on big piston

Therefore, the force applied on the big piston is 1306.67 N
I am pretty sure the answer would be too stretch
Answer:
The gravitational force exerted on the object is 75 N (answer D)
Explanation:
Hi there!
The gravitational force is calculated as follows:
F = m · g
Where:
F = force of gravity.
m = mass of the object.
g = acceleration due to gravity (unknown).
For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:
y = y0 + v0 · t + 1/2 · a · t²
Where:
y = position at time t.
y0 = initial position.
v0 = initial velocity.
t = time.
g = acceleration due to gravity.
Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.
Then, after 2 seconds, the height of the object will be -30 m:
y = y0 + v0 · t + 1/2 · g · t²
-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²
-30 m = 1/2 · g · 4 s²
-30 m = 2 s ² · g
-30 m/2 s² = g
g = -15 m/s²
Then, the magnitude of the gravitational force will be:
F = m · g
F = 5 kg · 15 m/s²
F = 75 N
The gravitational force exerted on the object is 75 N (answer D)
Have a nice day!
Answer:
1410 Hz
Explanation:
Capacitance is reduced by 2, so the angular frequency will increase by a factor of
.