answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
2 years ago
13

Which of the following quantities provide enough information to calculate the tension in a string of mass per unit length μ that

vibrates with a frequency f?A. the wave speed v and ?
B. the wavelength ? and f
C. the wave speed v and f
D. the wavelength ? and ?
Physics
1 answer:
Bad White [126]2 years ago
8 0

Answer:

A. the wave speed v and Wavelength

Explanation:

Given that

Mass density per unit length=μ

Frequency = f

The velocity V given as

\mu=\dfrac{T}{V^2}\ kg/m

V=\sqrt{\dfrac{T}{\mu}}

T=Tension

V=Velocity

V= f λ

λ=Wavelength

Therefore to find the tension ,only wavelength and speed is required.

The answer is A.

You might be interested in
Physics students use a spring scale to measure the weight of a piece of lead. The experiment was performed two times: once in th
Lady_Fox [76]

Answer:

The reading of the experiment made in air is 50 g more than the reading of the measurement made in water.

Explanation:

Knowing that the density of lead is 11,3 g/cm^{3} and the volume, we can calculate the true weight of the piece of lead:

weight_{lead}=\rho _{lead}*V_{lead}=11,3  g/cm^{3} *50 cm^{3}   = 565 g

When the experiment is done in air, we can discard buoyancy force (due to different densities) made by air because it's negligible and the measured weight is approximately the same as the true weight.

When it is done in water, the effect of buoyancy force (force made by the displaced water) is no longer negligible, so we have to take it into account.

Knowing that the density of water is 1 g per cubic centimeter, and that the volume displaced is equal to the piece of lead (because of its much higher density, the piece of lead sinks), we can know that the buoyancy force made by water is 50 g, opposite to the weight of the lead.

Weight_{measured}=weight_{lead}-weight_{water}=\frac{(565 g *9.8 m/s^{2}  -50 g*9.8 m/s^{2})}{9,8m/s^{2} }  = 515 g

Now that we have the two measurements, we can calculate the difference:

Difference= |Weight _{in   water}- Weight _{in   air}|=|515 g-565 g|=50 g

The reading of the experiment made in air is 50 g more than the reading of the measurement made in water.

4 0
2 years ago
Marta , who is only 5years old , heard her mother use a curse word and is now repeating that word much to the embarrassment of h
hjlf
Is there a pic I could maybe see of it!
8 0
2 years ago
A turntable rotates counterclockwise at 76 rpm . A speck of dust on the turntable is at 0.47 rad at t=0. What is the angle of th
icang [17]

To solve this exercise it is necessary to apply the kinematic equations of angular motion.

By definition we know that the displacement when there is constant angular velocity is

\theta= \theta_0 +\omega t

From our given data we know that,

\omega = 76\frac{rev}{min}

\omega = 76\frac{rev}{min}(\frac{2\pi rad}{1rev})(\frac{1 min}{60s})

\omega = 7.958rad/s

Moreover we know that

\theta_0 = 0.47 rad

Therefore for time t=8.1s we have,

\theta= \theta_0+ \omega t

\theta= 0.47+(7.958)(8.1)

\theta = 64.9298rad

That number in revolution is:

\theta = 64.9298rad(\frac{1rev}{2\pi})

\theta = 15.108 Revolutions

Here, we see that there are 15 complete revolutions

And 0.108 revolutions i not complete, so the tunable rotation is

\theta_{net} = 0.108*2\pi=0.216\pi

Therefore the angle of the speck at a time 8.1s is 0.216\pi

4 0
2 years ago
If a force always acts perpendicular to an object's direction of motion, that force cannot change the object's kinetic energy.
laiz [17]
This is very good conceptual question and can clear your doubts regarding work-energy theorem.
Whenever force is perpendicular to the direction of the motion, work done by that force is zero.
According to work-energy theorem,
Work done by all the force = change in kinetic energy.

here, work done = 0.
Therefore, 
0=change in kinetic energy
This means kinetic energy remains constant.
Hope this helps
5 0
2 years ago
As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
Andreyy89

Answer:

Explanation:

When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.

When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other  .So both the shells lose their charges .The positive half shell also loses all its charges

When we separate the half shells , there will be no deflection  in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.

4 0
2 years ago
Read 2 more answers
Other questions:
  • a bobsled has a momentum of 1500 kg*m/s to the south. Air resistance reduces its momentum to 750 kg*m/s to the south. What impul
    11·2 answers
  • HURRY UP PLZZZ Two identical waves are traveling toward each other in the same medium. One has a positive amplitude, meaning tha
    14·2 answers
  • A truck traveling down the highway collides with a slower moving mosquito traveling in the same direction. Which of the followin
    5·1 answer
  • Charlie is playing with his daughter Torrey in the snow. She sits on a sled and asks him to slide her across a flat, horizontal
    10·2 answers
  • Gamma rays may be used to kill pathogens in ground beef. One irradiation facility uses a 60Co source that has an activity of 1.0
    6·1 answer
  • A hot air balloon is on the ground, 200 feet from an observer. The pilot decides to ascend at 100 ft/min. How fast is the angle
    14·1 answer
  • Dante uses 14 J of work to lift a weight for 30 seconds. How much power did he use?
    14·1 answer
  • Yasmin determines the velocity of a car to be 15 m/s. The accepted value for the velocity of the car is 15.6 m/s. What is Yasmin
    10·2 answers
  • Difference between calorimeter and thermometer ?
    8·2 answers
  • In the year 2090, and Burt is still alive! Well, he’s really just a brain connected to a “life machine.” Since Burt has no body,
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!