First, we write the SI prefixed. The SI unit for distance is meters.
Kilo = 10³
Mega = 10⁶
Giga = 10⁹
Terra = 10¹²
Because our value has ten to the power of 11, we will use the closest and lowest power prefix, which is giga.
1.5 x 10¹¹ / 10⁹
= 1.5 x 10² Gm or 150 Gm
Writing in kilometers, we simply repeat the procedure except we divide by 10³ this time.
1.5 x 10¹¹ / 10³
= 1.5 x 10⁸ km
Answer:
Rutherford
Explanation:
Basic principles of the Rutherford atomic model.
1. Positively charged particles are in a very small volume compared to the size of the atom.
2. Most of the mass of the atom is in that small central volume. Rutherford did not call it "core" in his initial papal but he did it from 1912.
3. Electrons with negative electrical charge revolve around the nucleus.
4. The electrons rotate at high speeds around the nucleus and in circular paths that it called orbits.
5. Both negatively charged electrons and the positively charged nucleus are held together by an electrostatic attraction force.
Answer:
<h2>1.5 ohms</h2>
Explanation:
Power is expressed as P = V²/R
R = resistance
V = supplied voltage
Given P = 600W and V = 30V
R = V²/P
R = 30²/600
R = 900/600
R = 1.5ohms
magnitude of its resistance is 1.5ohms
Answer:
The answer is B) 3 seconds
Explanation:
I just took the test on 2020 edge and got it right
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>