answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phantasy [73]
2 years ago
10

Suppose you are myopic (nearsighted). You can clearly focus on objects that are as far away as 52.5 cm away. You can clearly foc

us on objects which are as close as 17.2 cm from your eyes, but no closer. The purpose of glasses would be to make objects that are far away appear to be at your far point. What would be the refractive power (in diopters - do not enter units) for your prescription?If your glasses make distant objects appear to be at your far point, then any object that is closer to you will appear even closer than it really is. What is the closest distance from your face at which you could hold a book and still be able to see it clearly while wearing your glasses?
Physics
1 answer:
Lilit [14]2 years ago
5 0

Answer:

Explanation:

Image of distant object will be made at far point or at 52.5 so

object distance u = infinity

image distance v = - 52.5 cm

focal length required = f

Lens formula

1 / v - 1 / u = 1 / f

1 /  - 52.5 - 0 = 1 / f

f =  -52.5 cm

= -.525 m

Power P = 1 / f = -  1 / .525

= -  1.90

now , for eye with glass we shall find new near point .

v = ?

u = - 17.2 cm

f = -  52.5 cm

1 / v - 1 / u = 1 / f

  1 / v + 1 / 17.2 = -  1 / 52.5

1 / v  = - 1 / 17.2 -    1 / 52.5

= - .05813 -  .019

= - .07713

u = - 12.96 cm

so new near point will be 12.96 cm

You might be interested in
Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, m l ,
Vitek1552 [10]

Answer:

The correct option that represents an acceptable set of quantum numbers for an electron in an atom is;

(b) 4, 3, -3, 1/2.

Explanation:

To solve the question, we note that the available options where the set of quantum numbers for an electron in an atom are arranged as n, l, m l , and ms are;

4, 4, 4, 1/2

4, 3, -3, 1/2

4, 3, 0, 0

4, 5, 7, -1/2

4, 4, -5, 1/2

Let us label them as a to as follows

(a) 4, 4, 4, 1/2

(b) 4, 3, -3, 1/2

(c) 4, 3, 0, 0

(d) 4, 5, 7, -1/2

(e) 4, 4, -5, 1/2

Next we note the rules for the assignment and arrangement of quantum numbers are as follows

Number                                   Symbol                Possible values

Principal Quantum Number  .......n........................1, 2, 3, ......n

Angular momentum quantum

number...............................................l.........................0, 1, 2, .......(n - 1)

Magnetic Quantum Number........m₁......................-l, ..., -1, 0, 1,.....,l  

Spin Quantum Number.................m_s.....................+1/2, -1/2

We are meant to analyze each of the arrangement for acceptability.

Therefore for (a),

we note that the angular momentum quantum number, l =4 , is equal to the principal quantum number n =4 which violates the rule as the maximum value of the angular momentum quantum number is (n-1) where the maximum value of the principal quantum number is n.

Therefore (a) is not acceptable.

(b) Here we note that

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = -3 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (b) 4, 3, -3, 1/2 represents an acceptable set of quantum numbers for an electron in an atom.

(c) Here we have

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = 0 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 0 ∉ (+1/2, -1/2) → not acceptable

Therefore (c) 4, 3, 0, 0 does not represents an acceptable set of quantum numbers for an electron in an atom.

(d) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 5 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = 7 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = -1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (d) 4, 5, 7, -1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

(e) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 4 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = -5 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (e) 4, 4, -5, 1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

3 0
1 year ago
How many turns should a 10-cm long ideal solenoid have if it is to generate a 1.5-mT magnetic field when 1.0 A of current runs t
Ira Lisetskai [31]

Answer:

N=119.34 turns

Explanation:

The magnetic field of a solenoid is calculated using the formula:

B= µo*\frac{I*N}{L} Equation 1

Where:

B: magnetic field in Teslas (T)

µo: free space permeability in T*m/A

I= Intensity of the current flowing through the conductor in ampere (A)

N= number of turns

L= solenoid length in meters (m)

Data of the problem:

L=10cm=10*10^{-2}, B= 1.5mT=1.5*10^{-3} T  ,I=1A  

µo=4\pi *10^{-7} \frac{T*m}{A}

We cleared N of the equation (1):

N=B*L/ µo*I

N= (1.5*10^{-3} *10*10^{-2} )/(4\pi *10^{-7} *1

N=0.1193*10^{3}

Answer

N=119.34 turns

3 0
2 years ago
Light hits a clear plastic bottle and a granite rock. Which choice most accurately describes the effect of visible light on the
balu736 [363]

Answer:

#4 is the accurate answer.

8 0
2 years ago
Read 2 more answers
A fighter jet is catapulted off an aircraft carrier from rest to 75 m/s. If the aircraft carrier deck is 100 m long, what is the
egoroff_w [7]

The acceleration of the jet is 28.1 m/s^2

Explanation:

Since the motion of the jet is a uniformly accelerated motion, we can use the following suvat equation:

v^2-u^2=2as

where

v is the final velocity

u is the initial velocity

a is the acceleration

s is the displacement

For the jet in this problem, we have

u = 0

v = 75 m/s

s = 100 m

Solving for a, we find the acceleration:

a=\frac{v^2-u^2}{2s}=\frac{75^2-0}{2(100)}=28.1 m/s^2

Learn more about acceleration:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

4 0
2 years ago
Plug variables expressed in SI units in the kinematic equation given in article: a = -v0^2/(2sg). What value of g you get as exp
Elanso [62]

Answer:

1) acceleration is increased by a factor of four 4X

2) the acceleration increases a factor of 2X

3) the correct answer of 400g

Explanation:

This is a kinematics exercise, where you use the velocity equation to obtain the acceleration, with the final velocity equal to zero.

           v² = v₀² + 2 a x

           0 = v₀² + 2 a x

           a = - v₀² / 2 x

           

In the case of wanting to give the acceleration as a function of g, we can find the relationship between the two quantities

         a / g = - v₀² / (2 x g)

Let's answer the different questions about this equation

1. The initial velocity is doubled, how much the acceleration is worth

           

       a/g = - (2v₀) 2 / 2xg

       a = 4 (-v₀² / 2xg) g

acceleration is increased by a factor of four 4X

2. if the stopping distance is reduced by 2, that is, x = x₀ / 2

we substitute

        a/g = (- v₀² / 2g) 2/x

         

        a =2  (-v₀² / 2x₀g)  g

       

therefore the acceleration increases a factor of 2X

3. the initial velocity of the hockey player is v₀ = 20 m / s and the stopping distance is

x = 5cm = 0.05m

we calculate the acceleration

        a / g = - 20² / (2 0.05)

        a / g = - 4000 / g

        a / g = - 4000 / 9.8 = 408

        a = 408 g

the correct answer of 400g, the value matches exactly if g = 10 m / s2 is taken

6 0
2 years ago
Other questions:
  • Examine the circuit. Pretend you are an electron flowing through this circuit and you are with a group of other electrons. Sudde
    14·2 answers
  • 2. Particle motion in a longitudinal wave is ______.
    14·1 answer
  • Another term for electromotive force is _____.<br><br> voltage<br> current<br> resistance<br> power
    7·1 answer
  • Uranus (mass = 8.68 x 1025 kg) and
    5·1 answer
  • Which of the following statements is FALSE?
    12·1 answer
  • Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
    7·1 answer
  • Use the drop down menu to answer the question
    7·2 answers
  • Wave motion is characterized by two velocities: the velocity with which the wave moves in the medium (e.g., air or a string) and
    12·1 answer
  • The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t3/2) rad, where t is in
    8·1 answer
  • A 15.0 g bullet traveling horizontally at 865 m&gt;s passes through a tank containing 13.5 kg of water and emerges with a speed
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!