We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
We know that acceleration is change in velocity by time taken for that change.
In this case velocity change is 3.7 m/s
Time taken for this change = 60 ms = 
So acceleration of frog = 
= 61.66 m/
So acceleration of frog is 61.66 m/
o it is evident that frog is capable of remarkable accelerations.
Answer:
20 cm
Explanation:
We can solve the problem by using the magnification equation:

where
is the size of the image
is the height of the real object (the man)
is the distance of the image from the lens
is the distance of the object (the man) from the lens
Solving the formula for
, we find

And the negative sign means the image is inverted.